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Preface

For years, most of my work was devoted to the logic of questions. In this
book, however, issues concerning questions and questioning are carefully
skipped. What I am going to present here are ideas and results which,
although in some cases elaborated during my work on questions, are of
a more general nature.

What is this book about? This book divides into three parts, ti-
tled “Generalizing” (chapters 1-3), “Epistemizing” (chapters 4-5), and
“Specifying” (chapters 6-11).

The concept of semantic consequence, or briefly entailment, is of basic
importance to logic. Traditionally, entailment is conceived as a relation
between a set of propositions and a proposition, ensuring the transmis-
sion (or preservation, if you prefer) of truth between the former to the
latter. A known generalization is provided by the concept of multiple-
conclusion entailment. Here entailment is construed as a relation between
sets of propositions: a set of propositions multiple-conclusion entails a
set of propositions just in case the existence of a true proposition in the
latter is ensured by the truth of all the propositions in the former. In
Chapter 1 of this book I make a step further in generalizing the concept
of entailment. A semantic relation between a family of sets of proposi-
tions and a set of propositions, dubbed generalized entailment, is defined
and examined. The underlying intuition is: if each set in the family con-
tains a true proposition, then the entailed set contains a true proposition.
The above condition may seem a weak one, but it gains intuitive plau-
sibility when one thinks of sets of propositions as representing search
spaces. Moreover, it can be shown that single- and multiple-conclusion
entailments are definable in terms of generalized entailment.

Chapter 2 is devoted to some special case of generalized entailment,
dubbed constructive generalized entailment.

The notion of refutation gradually strengthens its position in logic.
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Chapter 3 presents a logical calculus which differentiates between proofs
of valid formulas, refutations of inconsistent formulas, and refutations
of contingent formulas. However, the calculus offers a uniform proof-
mechanism for proofs and refutations. This is achieved by the introduc-
tion of a kind of conceptual unifier, namely the notion of holistically
inconsistent set of formulas. The system “calculates” such sets, or, to be
more precise, sequents based on them. Since valid, inconsistent, and con-
tingent formulas correspond to different, yet strictly defined, holistically
inconsistent sets, a proof of a sequent based on a set of a given kind can
be regarded, depending on a case, as a proof or as a refutation of the
corresponding formula.

Although Chapter 1 and Chapter 2 on the one hand, and Chapter
3 on the other address diverse issues, a feature is common to them: in
each case an attempt is made to generalize existing accounts. The title
of the part of this book comprising chapters 1-3, “Generalizing,” reflects
this.

The second part of this book, “Epistemizing,” contains two chapters
which delve into the concept of propositional knowledge and its rela-
tives. Chapter 4 is of a critical nature. It takes under scrutiny two basic
approaches to the nature of propositional knowledge, namely the knowl-
edge as true belief “plus something else” account and the knowledge as
true conviction account. Three, to my knowledge so far unnoticed, prob-
lems/paradoxes concerning knowledge conceived these ways are pointed
out and discussed. Chapter 5, in turn, proposes a change in perspec-
tive. The concept of being epistemically permitted is introduced. What
is permitted is a declarative sentence/proposition, what permits it (or
not) is a state intuitively understood a set of alternative accounts of how
things are. In general, being epistemically permitted is different from
being epistemically possible and from being known; the latter concepts
can be defined in terms of the former, however. A relation akin to en-
tailment, dubbed transmission of epistemic permittance, is then defined
and analysed.

The remaining chapters of this book constitute its third part, titled
“Specifying.” In Chapters 6 and 7 two concepts of single- and multiple-
conclusion entailment, based on the idea of minimality, are introduced
and studied. The analysed entailments, dubbed “strong,” are non-Tarsk-
ian. In particular, they are not monotone, but, at the same time, they
have some intuitively plausible properties which their standard counter-
parts lack. Chapter 8 is devoted to the issue of emplacement of strong en-
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tailments among alternative proposals, including classical, relevant and
connexive stances. Chapter 9 presents an application of the concept of
strong single-conclusion entailment in the area of belief revision. Some
proof-theoretic accounts of strong entailments are offered in Chapter 10.
Chapter 11 briefly indicates how the formal apparatus introduced in the
previous chapter can be employed in analysing further issues.

Sources. Some, but not all, of the results presented in this book have
been already published in my papers.

Chapters 1 and 2 are based on parts of my “Generalized Entailments”
[61]. However, sections of [61] devoted to issues of the logic of questions
are not included here, and a few additions were made as well.

Chapter 3 is based on my “Towards a uniform account of proofs and
refutations” [64] with rewriting.

Chapter 4 presents so far unpublished material.

Chapter 5 is based on parts of “Being permitted, inconsistencies, and
question raising” [59] with extensive rewriting and some terminological
changes. The sections of [59] devoted to question raising are skipped.

Chapters 6, 7, 8, and 9 are based on parts of my “Entailment, trans-
mission of truth, and minimality” [65] with rewriting. Sections of [65]
devoted to argument analysis are omitted. In the case of Chapter 7,
section 7.2.4 provides a new development. As for Chapter 9, section 9.3
is new.

Chapter 10 comprises some (rewritten) parts of [65]. Numerous ex-
amples were added in order to make the construction presented more
comprehensible. Section 10.2 is new.

Section 11.1 of Chapter 11 come from [65], while the remaining sec-
tions are new.

An attempt was made to unify terminology and notation. Taking
into account the diversity of themes addressed in this book, in order
to make its chapters readable separately, each chapter includes either a
section which describes the logical apparatus used or a reference to a
chapter where this is done. In some cases, however, technical terms (e.g.
valuation, sequent, etc.) are construed differently in different chapters,
but this is always signalled.

Poznan, July 2025
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Chapter 1

(zGeneralized Entaillment

1.1 Generalized Entailment: Intuitions

As for logic, entailment is most often conceived of as a relation between
a set of well-formed formulas (wffs for short) on the one hand, and a
single wff on the other. Entailment ensures transmission of truth: a wif
A entailed by a set of wifs X must be true if only all the wffs in X are
true. What “must” means here depends on a logic under consideration,
and similarly for “truth.” The transmission of truth principle falls under
the general schema:

(1) for each M: if all the wffs in X are true in M, then A is true in
m

where 01 stands, depending on a case, for: “valuation” (of an appropriate
kind), “model”, “intended model”, “world of a model”, and so forth.

Entailment understood in the standard way exhibits a kind of asym-
metry: what is entailed is a single wff, while what is entailing it is a set
of wifs. If, for some reasons, you prefer symmetry over the lack of it,
there are two possible ways of making entailment a relation between sets
of wifs. Let X and Y stand for sets of wifs. One may define entailment
of Y from X by imposing either of the following conditions:

(2) for each M: if all the wffs in X are true in M, then all the wffs in

Y are true in N,

(3) for each M: if all the wffs in X are true in M, then at least one
wff in'Y is true in M.
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The condition (2) leads to a trivial generalization. Obviously, the condi-
tion is fulfilled if, and only if X entails every wff in Y. But the case of
condition (3) is different. A generalization by the condition (3) gives a
well-known concept of multiple-conclusion entailment, or mc-entailment
for short.!

One cannot say that mc-entailment is always definable in terms of
entailment. The following observations justify this claim. First, it hap-
pens that a set of wifs is mc-entailed, but no wif in the set is entailed.
This phenomenon shows up even at the elementary level of Classical
Propositional Logic. Here is a simple example. The singleton set {pV ¢}
mc-entails the set {p, ¢}, but neither p nor ¢ is entailed by {p V ¢}. Sec-
ond, it is not a general rule that mc-entailment of Y from X reduces to
entailment of \/Y (that is, a disjunction of all the wffs in Y) from X.
It can happen that Y is an infinite set and the corresponding language
lacks infinite disjunctions. More importantly, there are non-classical log-
ics in which mc-entailment of Y from X holds, but entailment of \/ Y
from X does not hold.

Example 1.1. Let us consider a three-valued propositional logic in
which disjunction, V, is understood according to Table 1.1.2

vVIio|i|ll
0/0|i|1
i|ififi
11|11

Table 1.1: McCarthy’s disjunction.

In such a case p does not entail ¢ V p because g V p can take the value i
when p takes the (designated) value 1. On the other hand, the set {q, p}
is still mc-entailed by the singleton set {p}.

! Tt is sometimes claimed that the concept of mc-entailment originates from [14]
due to introduction of sequents with sequences of wffs in the succedents. The semantic
concept of mc-entailment was explicitly introduced in [7] under the heading “involu-
tion.” Its syntactic counterpart, mc-consequence, was incorporated into the general
theory of logical calculi in [39]. The first monograph devoted to mc-consequence and
related concepts (multiple-conclusion calculus, multiple-conclusion rules, etc.) was
[40].

2 We borrow the table from [3]. Unlike [3], we use “1” for truth, “0” for falsity,
and “i” for the third logical value. As the authors of [3] indicate, the table expresses
an idea already present in McCarthy’s [34].
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Similarly, {p} does not entail p V ¢, but mc-entails {p,q} when dis-
junction is construed in a way presented in Table 1.2, which expresses
the meaning of disjunction in some of Bochvar’s logics; see [5].

- <
i) e en)
N e
| |

Table 1.2: Bochvar’s disjunction.

Mc-entailment, however, exhibits a kind of asymmetry with respect
to quantifiers used. As for the condition (3), the clause occurring in the
scope of “for each 9" involves universal quantifier in the antecedent
and existential quantifier in the consequent. When X mc-entails Y, one
expects from X to consists of truths, while Y is only required to contain
a truth. This quantificational heterogeneity shows that X and Y are
intuitively understood in different manners. A set of wifs can represent
a belief base, but can also represent a search space. It seems natural
to think of a mc-entailed set as representing a search space. On the
other hand, when X mec-entails Y, it seems natural to construe X as a
representative of a (potential) belief base.

But what if we are after a relation between sets of wffs each of which

represents a search space? At the first step we can consider a relation
between sets of wifs, X and Y, fulfilling the following condition:

(4) for each M: if at least one wff in X is true in M, then at least one
wff in'Y is true in M.

Generally speaking, condition (4) expresses the following intuition: if
truth can be found in a search space X, then truth can be found in the
search space Y.

A natural generalization would be to allow for many search spaces in
the antecedent. Let ® be a family? of sets of wifs, and let Y be a set of
wifs. We may require ® and Y be connected according to the following
principle:

(5) for each M: if, for all X € ®, at least one wff in X is true in M,
then at least one wff in'Y is true in IN.

3 By a family of sets we mean, here and below, a set of sets.
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Now the intuition is: if truth can be found in all the search spaces that
belong to ®, then truth can be found in the search space Y as well.

As for condition (5), existential quantifier plays the crucial role both
in the antecedent and the consequent. But there is a price: we have
jumped to the level of families of sets. Moreover, homogeneity of the
domain and the range is lost.

In this chapter I define and investigate a semantic relation between
families of sets of wifs and sets of wifs. The basic intuition which under-
lies the proposed definition is that of the condition (5) above. I dub the
relation generalized entailment.

1.2 Logical Preliminaries

We consider a formal language for which the concept of well-formed
formula (wff) is defined. We use A, B, C, D as metalanguage variables for
wifs, and X, Y, W, Z, with subscripts if needed, as metalanguage variables
for sets of wffs. The Greek letters ®, ¥ will refer to families of sets of wifs,
that is, sets of sets of wifs. In the metatheory we assume a version of set
theory that allows both for sets and classes, and incorporates the Axiom
of Choice. We use standard set-theoretic terminology and notation. The
expression “iff” abbreviates “if and only if.”

As for the general semantic framework, we follow here the idea of
[40], yet with some adjustments borrowed from [58].

Definition 1.1 (Partition of the set of wffs). Let Form be the set of wffs
of a formal language. A partition of Form is an ordered pair:

P=(Tp,Up)
where Tp NUp =0 and Tp U Up = Form.

We assume that the language considered is supplemented with seman-
tics rich enough to define some concept of truth for wifs. The concept is
always relative to some metalogical constructs, such as valuations, mod-
els, matrices, etc. The relevant concept of truth determines the class of
admissible partitions of the language under consideration. The following
examples illustrate this.

Example 1.2. Let Formcpp be the set of wifs of the language of Classical
Propositional Logic (hereafter: CPL). A Boolean valuation is a function
v that assigns a truth value, 1 or 0, to each propositional variable and
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is extended to all wifs in the standard manner by using the Boolean
functions corresponding to the connectives.?

A partition P = (Tp,Up) of Formcp, is admissible iff there exists a
Boolean valuation v such that:

Tp = {A € Formcp : v(A) = 1}.

Thus, for any admissible partition P = (Tp, Up), the set Tp comprises
all the wifs which are true under the corresponding Boolean valuation
v, and (since Up = FormcpL \ Tp), Up contains the wifs which are false
w.r.t. v.

Example 1.3. We consider the propositional modal logic S4. Let
Formgs be the set of wifs of the language of (propositional) S4. The
concept of S4-Kripke model, as well as the concept of truth of a wiff
in a world of a model, are defined in the standard manner. We write
(M, w) = A for “A is true in world w of model M.”

A partition P = (Tp,Up) of Formgy is admissible iff for some S4-
Kripke model M = (W, R, V) and some w € W:

Tp = {A € Formgq : (M,w) E A}.

Example 1.4. This time we consider First-Order Logic with Identity
(hereafter: FOL). The concepts of FOL-model and of truth of a wif in a
FOL-model are defined in the standard manner. By Ver(M) we designate
the set of all wifs which are true in a FOL-model M.

A partition P = (Tp, Up) of the set of wifs of the language of FOL is
admissible iff for some FOL-model M:

Tp = Ver(M).

Classes of admissible partitions of languages different from these just
considered can be defined according to the pattern applied above.”

When P = (Tp,Up) is an admissible partition, we may think of Tp
as the set of truths of the partition, and of Up as the set of untruths of
the partition.

4 Alternatively, one can use here the concept of CPL-valuation; see Definition 3.1
in Chapter 3.

5 To be more precise, this is only one of the ways of defining the class of admissible
partitions. For some languages admissible partitions can be defined directly (cf. [58]
and [29]). It is also possible to “extract” the class of admissible partitions out of a
(syntactic) consequence relation determined by a logic (cf. [62]).
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Given that the class of admissible partitions is fixed, single-conclusion
entailment (or simply: entailment), =, and multiple-conclusion entail-
ment, |=, can be defined by:

Definition 1.2 (Single-conclusion entailment; entailment). X = A iff
there is no admissible partition P = (Tp,Up) such that X C Tp and
A¢Tp.

Definition 1.3 (Multiple-conclusion entailment; mc-entailment). X |=Y
iff there is no admissible partition P = (Tp,Up) such that X C Tp and
YNTp=0.

For example, in the case of CPL we get: X = A iff v(A) = 1 for
every Boolean valuation v such that v(B) = 1 for any B € X. As for
mc-entailment, we have: X |=Y iff for each Boolean valuation v in which
v(B) =1 for every B € X, there exists A € Y such that v(A) = 1.

In what follows, we assume that the language for which we define
generalized entailment and the remaining concepts, is an arbitrary but
fixed formal language satisfying the general conditions specified in this
section. By admissible partitions we mean admissible partitions of the
set of wifs of the language.

1.3 Definition of Generalized Entailment

Generalized entailment (g-entailment for short) is a relation between a
family of sets of wffs on the one hand, and a set of wifs on the other. We
use ||= as the symbol for g-entailment.

Definition 1.4 (Generalized entailment; g-entailment). ® || Y iff for
each admissible partition P = (Tp,Up) such that:

(x) foreach X € ®: XNTp#
it holds that Y N'Tp # 0.

The proposed definition of g-entailment expresses, in the current con-
ceptual setting, the idea that lies behind condition (5) specified in section
1.1 above.

1.3.1 Some Examples

Some examples can be helpful.
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Example 1.5. As for CPL, we have: ® ||=Y iff there is no Boolean
valuation v such that:

e for each X € @, v(A) = 1 for some A € X, and v(B) = 0 for all
BeY.

For instance, the following holds (p, ¢, 7, s, t, u are, here and below,
propositional variables):

{{pva—=svrpvag—sVi}{p,at} = {s 1}

Example 1.6. Consider the case of FOL. We have: ® || Y iff for each
FOL-model M:

o if XN Ver(M) # () for each X € ®, then Y N Ver(M) # 0.

For instance (P, S are one-place predicates, and a,b are individual con-
stants):

{{3xPz, xSz}, {Vx(Px V Sz - x =aV x =b}} || {Pa,Pb,Sa,Sb}

Note that {Vz(Pz V Sx — x = aV x = b} is a singleton set. However, it
is not excluded that ® contains singleton sets.

1.4 Basic Properties of Generalized Entailment

Recall that ||= is a relation between a family of sets of wifs and a set
of wifs. Interestingly enough, |= still behaves in a “consequence-like”
manner.

Proposition 1.1. If X € ®, then ¢ || X.

Proof. Suppose otherwise. Then there exists an admissible partition, P,
such that both X N Tp =0 and X N Tp # (. A contradiction. O

Proposition 1.2. If ¢ || Y and ® C U, then ¥ ||E Y.

Proof. Suppose that ¥ ||~ Y. Thus there exists an admissible partition,
P, such that Y NTp =0 and foreach Z € U : ZNTp # 0. As ® C U, it
follows that @ ||i= Y. O

Proposition 1.3.
If o |FY and V || X for every X € ®, then ¥ ||EY.

Proof. Suppose that ¥ |- Y. So for some admissible partition, P, we
have YNTp =0 and ZNTp # 0 for any Z € U. Since ¥ = X for every
X € @, it follows that X N Tp # @ for each X € ®. Hence Y N Tp # 0,
as @ ||E Y. A contradiction. O
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1.5 Special Cases and Cut

Let us introduce:

Definition 1.5 (Safeset). Y is a safeset iff Y NTp # 0 for each admis-
sible partition P = (Tp, Up).

A set containing a valid® wff is a safeset. But there exist safesets
which do not contain valid wifs. For instance, {p, —p} is a safeset in view

of CPL.

Clearly, we have:
Corollary 1.1. A safeset is g-entailed by any family of sets of wffs.
Proposition 1.4. If 0 |= Y, then Y is a safeset.

Proof. Assume that 0 ||I= Y. Let P be an arbitrary but fixed admissible
partition. The condition (%) of Definition 1.4 is (trivially) true w.r.t.
® = (). We have:

(") for each X € 0: X N Tp # 0.
Hence Y N Tp # (). But P is an arbitrary admissible partition. O

Thus the empty set g-entails only safesets. But if the empty set is an
element of a family of sets of wifs, the family g-entails any set of wifs.
This is due to:

Proposition 1.5. If 0 € ®, then ® ||E Y for any set of wffs Y.

Proof. Assume that ® ||F£ Y for some set of wifs Y. Thus there exists
an admissible partition, P, for which the following condition holds:

for each X € ®: X NTp #£ 0 (1.1)

However, () € ® and hence the condition (1.1) yields:
DNTp#£ 0 (1.2)
which is impossible. ]

G-entailment has a property akin to cut:

6 A wff A is valid iff A € Tp for each admissible partition P = (Tp, Up) of the set
of wifs of the language.
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Proposition 1.6. If ¥V |= X and PU{X} ||FY, then TUQD || Y.

Proof. Assume that ¥ [ X and @U{X} [ Y, but YU® | Y.
If follows that there exists an admissible partition P = (Tp,Up) such
that ZNTp £ (@ foreach Z € $¥UP, and Y NTp = 0. As ¥ || X,
we have X N Tp # 0. But @ U{X} || Y and hence Y N'Tp # 0. A
contradiction. O

As an immediate consequence of Proposition 1.6 we get:

Corollary 1.2. If @ |= X and PU{X} ||EY, then @ Y.

1.6 Generalized Entailment versus Entailment
and Multiple-Conclusion Entailment

Both entailment and mc-entailment are definable in terms of g-entailment.
However, we need an auxiliary concept.

Definition 1.6 (Disperse). X =4 {{A}: Ae X},

X is thus the family of singleton sets based on the elements of X.
The family X may be called the disperse of set X. Observe that () = ().

The following holds:

Corollary 1.3. For every admissible partition P = (Tp,Up): X C Tp
iff for each Z € X : Z C Tp.

Proof. Just notice that X C Tp iff B € Tp for any B € X. O

By Corollary 1.3 we obtain that g-entailment and entailment are
linked in the way described by:

Proposition 1.7. X = A iff X |l= {A}.
As for mc-entailment, again by Corollary 1.3, we have:

Proposition 1.8. X |[=Y iff X ||= Y.
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1.7 Generalized Entailment and Choices

Let us come back to Example 1.5 presented in section 1.3.1. As we
remarked, the following holds:

{{pVvag—=svrpvag—sVvi}{pq}} I {s,7t}

For brevity, we designate {pV ¢ — sV r,pVq— sVit} by X1, {p,q} by
Xy, and {s,r,t} by Y. Thus {X;, X2} ||E Y. Now let us consider the
following sets of wffs:

Zy={pVq—sVrp}
Zo={pVq—sVrq}
Zz={pVq—sVtp}
Zy={pVq—sVtq}

Each Z;, where 1 <i < 4, is a set that contains exactly one representative
of X1 and exactly one representative of Xo. Observe that we have:

Zi|FY

that is, each Z; (1 <i < 4) mc-entails Y. In other words, any set which
contains exactly one representative of X; and exactly one representative
of X9 mc-entails Y.

The above observation can be generalized and then turned into an
equivalence, but some caution is needed. We have to express in exact
terms the idea of a set which contains exactly one representative of each
non-empty set belonging to a previously given family of sets. This can be
done in many ways. In the next section we present a solution which, ad-
ditionally, will be used in defining the concept of constructive generalized
entailment in Chapter 2.

1.7.1 ch®(®)-sets and ch(P)-sets

We introduce, first, the following technical concept” (x stands here for
the sign of Cartesian product):

" I am indebted to Jerzy Pogonowski for his suggestion to use the concept for the
purposes of analysis of g-entailment.
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Definition 1.7.

o _ [ Xx{X} i X £0,
1 0 if X =0.

Clearly, we have:
Corollary 1.4. If X # Z, then X® N Z® = (.
Definition 1.8. &% =4 {X® : X € ®}.

Obviously, if ® = ), then ®® = (). (To see this it suffices to observe that
{X®:X €0} =0.) The following holds:

Corollary 1.5. If ®® # () and O ¢ ®%, then there exists a set vy such
that v comprises exactly one element (A, X) of each X® € ®©.

Proof. By the Axiom of Choice (observe that Corollary 1.4 warrants that
the elements of ®® are pairwise disjoint). O

Our second technical concept is given by:
Definition 1.9 (ch®(®)-set). 7 is a ch®(®)-set iff
1. vy CU®® and

2. for each X% € ®® such that X® # () there erists exactly one
(A, X) € X® such that (A, X) €.

The following corollaries will be useful:
Corollary 1.6. If ® = (), then 0 is the only ch®(®)-set.

Proof. If ® = (), then ®® = (). Hence clause (2) of Definition 1.9 is
fulfilled by () (since there is no X® € ®% such that X® = (). Clearly,
U0 =0, and 0 is the only subset of | J ®%. O

Corollary 1.7. If ® = {0}, then 0 is the only ch®(®P)-set.

Proof. () is the only element of ®. Hence there is no X® € ®% such that
X® £ (. O

Corollary 1.8. If ® # () and ® # {0}, then ®® # ().

Proof. If ® # () and ® # {0}, then there exists X € ® such that X # 0.
Clearly, X® # (). On the other hand, X® € &%, O
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One can prove:

Proposition 1.9. For each family of sets ® there exists at least one
ch®(®P)-set.

Proof. It ® = () or ® = {(}}, then, by corollaries 1.6 and 1.7, () is the only
ch®(®)-set. If ® # () and ® # {0}, then ®® # @ by Corollary 1.8, at
least one element of ®® is a non-empty set, and all the elements of ®®
are disjoint. Assume that ) ¢ ®®. The existence of ch®(®)-set is now
warranted by Corollary 1.5. Assume that ) € ®®. Thus ) € ®. Since,
by assumption, ® # {0}, we move to ¥ = &\ {(}}. Clearly, the sets
in U® are non-empty and disjoint. Thus, by Corollary 1.5 again, there
exists a ch®(W)-set, say, 7. But, obviously, v is also a ch®(®)-set. [

A ch®(®)-set is a set of ordered pairs. We take into account the first
projection of the set.

Definition 1.10 (First projection). Let v be a ch®(®)-set.

’}/1 =df {A : <A, X> € 7}.
Now we define the basic technical concept.

Definition 1.11 (ch-set). Z is a ch(®)-set iff Z = ' for some ch®(®)-
set .

A ch(®)-set is a set comprising exactly one representative of each
non-empty set belonging to ®. One should not confuse the existence of
exactly one representative of each set belonging to a family of sets with
the existence of a system of distinct representatives of the family.® The
representatives of distinct sets in a ch-set need not be distinct.

Example 1.7. Let ® = {X;, Xs}, where X; = {p, ¢} and Xy = {p,r}.

The following are ch®-sets:

7X17 7X2 }7

{(p, X1), {p, X2)
{(p, X1), (r, X2)},
{{g. X1), (p, X2)},
{{g, X1), (r, X2)}.

8 As it is well-known, a system of distinct representatives — a transversal of a
family of sets — does not always exist; cf., e.g., [55], Chapter 8.
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Thus the family of ch(®)-sets comprises: {p}, {p,7}, {p,q}, {¢,7}.
As for the ch(®)-set {p}, p is the representative of X; and is the repre-
sentative of Xs.

In the light of Proposition 1.9, the following holds:

Proposition 1.10. For each family of sets ® there exists at least one
ch(®)-set.

Let us also note:

Proposition 1.11. Let A € X for some X € ®. There exists at least
one ch(®)-set such that A belongs to this set.

Proof. The family ® can be displayed as the union of the following fam-
ilies of sets:

o ={Xed:Ac X}
Py={Xecd:A¢ X}

where ®; N &, = (). By Proposition 1.9, there exists a ch®(®s)-set, say,
~. Let us define a set d by the condition:

(B,Y)€eod iff B=AandY € &,

Let ( = yUJ§. As &1 NPy = (), we also have y N = (). It is easily
seen that yUJ is a ch®(®)-set. Thus (yUJ)! is a ch(®)-set. Obviously,
Ae(yud)t O

1.7.2 Generalized Entailment and ch(®)-sets

A ch(®)-set can be intuitively understood as a “choice set”: we choose
from each non-empty set that belongs to ® its representative. Thus
quantifying over all ch(®)-sets amounts to quantifying over all possible
choices of this kind. In this section we show that, for any family of
non-empty sets of wifs, being g-entailed by the family amounts to being
mec-entailed by each “choice set” associated with the family, that is, by
any ch-set of the family.

Theorem 1.1.
Let 0 ¢ ®. Then @ ||EY iff Z |EY for each ch(®)-set Z.
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Proof. (=) Assume that @ |[= Y. Suppose that that Z |# Y for some
ch(®)-set Z. Thus there exists an admissible partition, P, such that
ZCTpand YNTp =0.

Assume that Z = (). Hence ® = () or ® = {()}. However, by assump-
tion () ¢ ®. Thus ® = (. As @ ||E Y, by Proposition 1.4 we get that ¥’
is a safeset. But Y N Tp = (. A contradiction.

Now assume that Z # (. Since Z is a ch(®)-set, it contains elements
of each set in ® (recall that, by assumption, these sets are non-empty).
Hence for each X € ® we have X N Tp # 0. But Y N Tp = (). It follows
that ® || Y. A contradiction.

(<) Assume that ® # ). Suppose that ® ||£ Y. By assumption, () ¢ .
Thus for some admissible partition, P, we have X N Tp # () for each
X € @, and Y NTp = (. Recall that, again by assumption, ® comprises
non-empty sets. We assign to each set X € ® the corresponding set X*
by:

X*"=XnNTp

Let ®* be the family of all X*-sets defined in the above manner. By
Proposition 1.9, ®* has a ch®(®*)-set, say, 6. Observe that § # @ and
d' C Tp. We define a set v by:

v={{A,X)ecd®: (A X*) €6}

It is clear that v is a ch®(®)-set. Moreover, ! = d'. So there exists
a ch(®)-set, namely v', such that ¥y C Tp. Hence Z |£ Y for some
ch(®)-set Z.

Finally, assume that ® = (. It follows that @) is the only ch(®)-set.
Suppose that & ||i¢ Y. Thus there exists an admissible partition, P,
such that Y N Tp = (). Therefore 0 [~ Y. O

Remark that the assumption “() ¢ ®” is a necessary one. As we have
shown (cf. Proposition 1.5), a family of sets that includes the empty set
g-entails any set of wifs.



Chapter 2

Constructive Generalized
Entailment

2.1 Constructive Generalized Entailment:
Intuitions

In this chapter I define and analyse a semantic relation between families
of sets of wifs and sets of wifs, dubbed constructive generalized entail-
ment. The intuitions which lie behind the proposed definition are slightly
different from those which underlie the concept of generalized entailment.
However, constructive generalized entailment is a special case of gener-
alized entailment.

The terminology and notation used in this chapter are these of Chap-
ter 1.

In order to explain the intuitions which lie behind the concept of
constructive generalized entailment, let us come back to Example 1.5
presented in section 1.3.1 of Chapter 1.

Let ® = {X;, X2}, where X; = {pVgqg— sVr,pVqg— sVt}and
X2 ={p,q}. We have @ ||= {s,r,t}. The respective ch(®)-sets are:
{pvag—svrp}
{pvag—svrq}
{pVq—sVvip}

{pvg—sVvt,q}
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Each of the above ch(®)-sets mc-entails the set {s,r,t}. But observe
that none of the above ch(®)-sets entails a single wff in {s,r,¢}!

However, we also have:
O |={sVvrsVvit} (2.1)

In the case of (2.1) g-entailment is constructive: for each ch(®)-set there
exists a single wif in {s V r,s V t} which is entailed by the ch(®)-set.
Here is another example of this kind. Let ¥ = & U {-s}. We have
U ||= {r,t}. Each ch(¥)-set results from a ch(®)-set by adding —s. It
is easily visible that any ch(W)-set either entails r or entails ¢.

2.2 Definition of Constructive Generalized
Entailment

Constructive generalized entailment, or cg-entailment for short, is a re-
lation between a family of sets of wifs and a set of wffs. We use [> as
the symbol for cg-entailment.

Definition 2.1 (Constructive generalized entailment; cg-entailment).
O[> Y iff for each ch(®)-set X there exists A € Y such that X = A.

Thus @ [>Y holds just in case each ch(®)-set entails some wif in Y.
Remark that different ch(®)-sets may entail different elements of Y.

By Definition 1.2 we get:

Corollary 2.1. @ [>Y iff for each ch(®)-set X there exists A €Y such
that for any admissible partition P = (Tp,Up) the following condition
holds:

(x) if X CTp, then A€ Tp.

2.2.1 Examples of Constructive Generalized Entailment

As it has been explained in section 2.1, the following hold:

{{pVvVag—=sVvrpVvqg—sVvit{p,qt}>{sVr,sVvi} (2.2)

{{ova—svrpvag—svitAp.ah, {-st}t={rt}  (2.3)
Here are further CPL-examples. Let:

Y={s—p-s—>qVrqg+ u}
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We have:
Yu {{S7ﬂ8}7{u7 _‘u}} [> {p, Q7T} (2.4)

Let
Z={pVqVr,s—p,-s— rqgtVu}

The following holds:
ZU {{37_'5}7{t3_'t}’{u’ ﬂu}} |> {p,q,?“} (2'5)
Let us now switch to FOL. We have:

{{Vz(Px <> SxzV(TzAUz))}, {Sa, =Sa}, {Ta, ~Ta}, {Ua, ~Ua}} [> {Pa, —Pa}
(2.6)

2.3 Basic Properties of Constructive Generalized
Entailment

Clearly, the following is true:
Corollary 2.2. If ®>Y, then Y # (.

Observe that being a safeset is not sufficient for being cg-entailed
by a family of wifs. For instance, {p, —p} is a safeset (w.r.t. CPL), but
{p, —p} is not cg-entailed by the singleton family {{p V —p}} (again, in
CPL). The situation is different in the case of g-entailment (cf. Corollary
1.1).

Similarly as g-entailment, also cg-entailment behaves in a “consequen-
ce-like” manner.

Proposition 2.1. ®[>Y for each Y € ® such that' Y # (.

Proof. Tt suffices to observe that if Y € ® and Y # (), then each ch(®)-
set contains an element of Y. O

Proposition 2.2. If ®>Y and ® C U, then V[>Y.

Proof. 1t suffices to observe that if ® C W, then each ch(¥)-set has a
subset being a ch(®)-set. O

Proposition 2.3. If ®[>Y and V¥ [> X for each X € ®, then ¥ [>Y.
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Proof. Let W be an arbitrary but fixed ch(¥)-set. By assumption,
> X for each X € ®. Thus for any X € &, the set Xy defined
by:
is non-empty. Let ®(y) be the family of all X(yy)-sets defined in the
above manner. By Proposition 1.9, the family ®y,) has a ch®(<I>(W))—
set, say, u. Thus p' is a ch(®(y))-set. Moreover, we have W = D for
each D € p'.

We define:

0={(C,X) e ®%:(C, X)) € u}

Clearly, ¢ is a ch®(®)-set and thus o' is a ch(®)-set. Observe that
o' = pl. As ®[>Y there exists A € Y such that o' = A. But, since
o' = p', we have W |= D for each D € o'. Therefore W = A. Hence
VY. O

Note, however, that if ) € ®, then, by Corollary 2.2, it is not the
case that @[> 0.

2.4 Constructive Generalized Entailment
and Cut

It should be noted that cg-entailment, similarly as g-entailment, has a
feature analogous to cut.

Proposition 2.4. If V> X and PU{X}[>Y, then TUP [>Y.

Proof. Assume that X € ®. Since ®U{X} [>Y holds, we get YU [>Y
by Proposition 2.2.

Assume that X ¢ ®. Let Z be an arbitrary but fixed ch(¥ U ®)-set.
Thus Z = +! for some ch®(¥ U ®)-set . We define the following sets:

vy ={(C,W) e~ : W e ¥}

vo = {{C,W)e~r: W e d}

vy is a ch®(¥)-set, and g is a ch®(P)-set. Thus (yy)' is a ch(¥)-set,
and (vg)! is a ch(®)-set.

Since, by assumption, W [>> X, there exists an element of X, say, A,
such that (yg)! = A. Let us define:

Yo = 7o U{(4,X)}
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7% is a ch®(PU{X })-set (since X ¢ ®) and thus (74)" is a ch(®PU{X})-
set. Clearly, A € (v3)!. By assumption, ® U {X}[>Y, and hence
(v:)! = B for some B € Y. On the other hand, we have:

(va)" = (ve)t U {A}

and (yy)! | A. Hence (v¢)! U (79)! | B. Since ((y¢)' U (ve)!) C Z,
it follows that Z = B. Therefore VU ® > Y. O

As an immediate consequence of Proposition 2.4 we get:

Corollary 2.3. ®> X and PU{X}[pY, then [>Y.

2.5 Constructive Generalized Entailment
versus Entailment and Generalized
Entailment

One can prove that entailment of a wiff A from a set of wifs X amounts
to cg-entailment of the singleton set {A} from the disperse of X.

Proposition 2.5. X = A iff X > {A}.

9]

Proof. By Corollary 1.3. Observe that X is the only ch(X)-set. O
Let us now prove that cg-entailment is a special case of g-entailment.
Proposition 2.6. If ®>Y, then ¢ | Y.

Proof. Assume that ¢ [>Y.

Let ) ¢ ®. Suppose that ® ||£ Y. By Theorem 1.1, there exists a
ch(®)-set, say, Z, such that Z |£ Y. It follows that there isno A € Y
such that Z = A and hence it is not the case that ® >Y. A contradic-
tion.

Let @ € ®. Thus, by Proposition 1.5, ¢ [[FY. O

Note that the converse of Proposition 2.6 does not hold. The exam-
ple presented at the beginning of this Chapter illustrates this. Here is
another. We have:

H{pVvaltt lIE {p, ¢}

but we do not have:

Hp Vv att{p q}.
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A more sophisticated counterexample is: we have {0} || {p,—p} (as
{0} g-entails every set), but we do not have {0} > {p, —p} (since 0 is the
only ch({0})-set, and neither p nor —p is entailed by ().

However, cg-entailment and g-entailment coincide on singleton sets
provided that () ¢ ®.

Corollary 2.4. Let 0 ¢ ®. Then @ || {A} iff > {A}.

Proof. By Theorem 1.1 and the fact that mc-entailment of {A} and
entailment of A coincide. O

2.6 Final Remarks

Constructive generalized entailment is a relation between a family of
sets of wifs and a set of wifs. When one interprets the respective sets of
wifs as sets of principal possible answers to questions, some concept of
interrogative entailment can be explicated in terms of cg-entailment (see
[61]).° Tt can also be shown that, at the propositional level, cg-entailment
simulates inquisitive entailment; see, again, [61]. However, the logic of
questions as well as Inquisitive Semantics are beyond the scope of this
book.

No full-fledged proof theory for cg-entailment has been elaborated
so far. Yet, it can be shown (cf. [61]) that the so-called erotetic search
scenarios carry information about concrete cases of cg-entailment.!? A
dedicated software which enables, inter alia, automatic generation of
erotetic search scenarios out of a predefined set of such scenarios, has
been developed (cf. [9]). This brings a computational perspective into
research on cg-entailment.

% According to the idea which is present in the majority of logical theories of
questions (for surveys, see, e.g., [20] and [60]), a question “offers” a set of “alternatives,”
and the alternatives are expressed by principal possible answers to the question,
usually labelled direct answers to it. Principal possible answers/direct answers, in
turn, are these possible answers to a question that are “optimal” in the sense that
they provide neither more nor less information than it is requested. Being true is not
a prerequisite of being a direct answer. For details, see, e.g., [60].

19" For erotetic search scenarios see, e.g., [56] or [58], Part IIL.



Chapter 3

A Uniform Account of Proofs
and Refutations.
The Propositional Case

3.1 Introduction

Consider a formal language supplemented with a bivalent semantics rich
enough to define some concept of truth of a well-formed formula (hence-
forth: wiff) in a model. The expression “model” is used here as a cover
term; depending on the particular form of the language, models are val-
uations of some kind, relational structures, and so on. Usually, a formal
language has many models of a given kind. When a non-empty class
of models, CM, is fixed, the set of all wifs of the language splits, first,
into two disjoint subsets: Val® and NVal®™. The set Val®™ comprises
all the wifs which are wvalid w.r.t. the class of models CM, that is, which
are true in each model from CM. The set NVal® in turn, comprises all
the remaining wifs, that is, wffs which are not valid w.r.t. the class of
models CM. However, the set NVal" is far from being homogenous. It
includes inconsistent (also called unsatisfiable) wifs, that is, wifs which
are not true in any model from the class CM. But it also includes wffs
which are consistent (or satisfiable) without being valid, i.e. wffs which
are true in some model(s) belonging to the class CM, but are not true
in other models from the class. Following a philosophical rather than a
logical tradition, let us call these wifs contingent. To be more precise,
when a class of models CM is fixed, the set NVal® splits into the set Inc™
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of CM-inconsistent wifs (i.e. wifs which are not true in any model from M)
and the set Ctg™ of CM-contingent wifs, that is, wifs which are neither
CM-valid nor CM-inconsistent.

Looking from the proof-theoretic point of view, the main challenge
for a logician is to build a calculus which makes provable all the valid
(w.r.t. a given class of models) wffs and only them. Sometimes, as a
by-product, a calculus gives an account of inconsistent wffs as well. An-
alytic tableaux are paradigmatic examples here. However, contingent
wifs remain beyond the scope of interest. The advocates of refutation
methods see the goal differently: they aim at proof-theoretic accounts of
non-validities (cf., e.g., [45], [42], [43]). But the class of non-validities in-
cludes both inconsistent wifs and contingent wifs. This distinction seems
to play no role in refutation calculi, however. Last but not least, logical
calculi focussed on validities and these focussed on non-validities operate
with diverse formal means.

In this chapter I present a calculus which, on the one hand, differen-
tiates between proofs of valid wifs, refutations of inconsistent wifs, and
refutations of contingent wffs. On the other hand, the calculus offers a
uniform proof-mechanism. This is achieved by the introduction of a kind
of conceptual unifier, namely the notion of holistically inconsistent set
of wffs. The system “calculates” such sets or, more precisely, sequents
based on them. Since valid, inconsistent, and contingent wffs correspond
to different, yet strictly defined, holistically inconsistent sets, a proof of
a sequent based on a set of a given kind can be regarded, depending on
a case, as a proof or as a refutation of the corresponding wif.

3.2 The Logical Basis

We remain at the level of Classical Propositional Calculus (CPL for
short). As for the language of (the analysed version of) CPL, we assume
that the vocabulary comprises a countably infinite set of propositional
variables, the connectives: =, V, A, —, =, and brackets. Well-formed for-
mulas (henceforth: wifs) of the language are defined as usual. We use
A, B,C, D, with subscripts when needed, as metalanguage variables for
wifs, and X,Y, with or without subscripts or superscripts, as metalan-
guage variables for sets of wifs. The letters p,q,r, s,t are exemplary
elements of the set of propositional variables of the language.

By literals we mean propositional variables and negations of propo-
sitional variables. Two literals are complementary if one of them is the
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negation of the other. A wif is an elementary conjunction iff it is a lit-
eral or is a conjunction of literals. A wif is in the disjunctive normal
form (hereafter: DNF) iff the wif is an elementary conjunction or is a
disjunction of elementary conjunctions.

Let 1 stand for truth and O for falsity.

Definition 3.1 (CPL-valuation; valuation). A CPL-valuation is a func-
tion, v, from the set of wffs of the language of CPL to the set {1,0},
satisfying the following conditions:

1. v(-A) =1 iff v(A) =0,
v(AVB)=1iffv(A) =1 orv(B) =1,
v(AANB)=1iffv(A) =1 and v(B) =1
(A= B)=1iff v(A) =0 orv(B) =1,
v(A=B) =1 iff v(A) = v(B).

v

ARSI

For brevity, in what follows we will be omitting references to CPL.
By wifs we will mean wifs of the language of CPL, and by valuations we
will mean CPL-valuations.

Definition 3.2 (Consistency, inconsistency, validity, and contingence w.r.t.
CPL-valuations). A set of wffs X is consistent iff there exists a valuation
v such that for each A € X, v(A) = 1; otherwise X is inconsistent. A
wff B is:

consistent iff the singleton set {B} is consistent,

inconsistent iff the singleton set {B} is inconsistent,

valid iff for each valuation v, v(B) = 1,

contingent iff B is neither inconsistent nor valid.

e v o~

CPL-entailment, =, is defined as follows:

Definition 3.3 (CPL-entailment; entailment). X = A iff for each valu-
ation v:

o ifv(B) =1 for every B € X, then v(A) = 1.
The next definition introduces the crucial notion.

Definition 3.4 (Holistically inconsistent set; Hl-set). A set of wffs X
1s holistically inconsistent iff X is inconsistent, but each wff in X is
consistent.
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Observe that each Hl-set has at least two elements.

The following are true:
Corollary 3.1. A wff C is contingent iff {C,—C} is a Hl-set.

Proof. (=) If C is a contingent wff, then there are valuations v, v* such
that v(C) = 1 and v*(C) = 0. So both C' and —C are consistent wifs.
On the other hand, the set {C,—C'} is inconsistent. Therefore {C,~C'}
is a Hl-set.

(<) If {C,~C} is a Hl-set, then both C' and —~C are consistent wifs.
Thus C' is as a contingent wif. O

Corollary 3.2. A wff C is inconsistent iff {CV p,C V —p} is a Hl-set.

Proof. (=) Assume that C'is an inconsistent wff. Each of the wifs: C'vp,
C'V —p, is consistent, however. On the other hand, the set {C'Vp, CV—p}
is inconsistent and hence is a Hl-set.

(<) If {CVp,CV —p}isa Hl-set, it is an inconsistent set and hence
{CVp,CV-p} EpA-p It follows that {C,C V —p} &= p A —p and
therefore C' |= p A =p. Thus C' is inconsistent. O

Corollary 3.3. A wff C is valid iff {-C V p,—~CV —p} is a Hl-set.

Proof. (=) If C is valid, then —C' is inconsistent. But both =C'V p and
—C'V —p are consistent wifs, and the set {~C'Vp, ~C'V—p} is inconsistent.
Therefore {—C' V p,—-C' V —p} is a Hl-set.

(<) The set {=C'V p,~C'V —p}, as a Hl-set, is inconsistent. Thus {-C'V
p,—CV —p} = p A —p and therefore =C' = p A —p. It follows that —C' is
an inconsistent wif and hence C' is a valid wif. O

Thus validity, inconsistency and contingency of wifs are expressible
in terms of Hl-sets.

3.3 The System HI™t

3.3.1 Axioms, Rules, Proofs, and Refutations

Since the system we are going to present “calculates” Hl-sets of CPL-wffs,
we label it by HICPL.

We operate with sequents of the form Y F, where Y is an at least
two-element finite set of CPL-wifs. In practice, we write down a sequent
Y I by listing the elements of Y left to the turnstile.
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Definition 3.5 (CPL-axioms of HIPY). By CPL-azioms of HIP we
mean all the wffs which are theorems of CPL.

We designate the set of CPL-axioms of the system HIPL by Ax?,';cf g

Definition 3.6 (Specific axioms of HIPY). A specific aziom of HIPL is
a sequent Y F such that each B € Y is an elementary conjunction, a
congunction of all the wffs in Y involves complementary literals, and no
B €Y involves complementary literals.

Here are examples of specific axioms:

p,p (3.1)
pA-g,p b (3.2)
“pA-q,q b (3-3)
“pA=q,pA=ggA-p E (3-4)

There are only two primary inference rules of HI*PL, namely:
YU{A} YU{B} + (Ry)

YU{AV B}

7}{ 5 %gi :: where (A = B) € Ax?,';CEL. (Rg)

Definition 3.7 (Proof of a sequent). A proof of a sequent Y + in HIPL
18 a finite labelled tree requlated by the rules of HICPL, where the leaves
are labelled with specific axioms and Y + labels the root.

A sequent Y + is provable in HIP: iff the sequent Y + has at least
one proof in HIPL,

Here are examples of proofs:

Example 3.8. A proof of the sequent =(p V q), =~(—p A =q) F:

-“p/A-q,p - R -“pA—q,q
2
“pA g, p “pA g, g F

R2
R1

2

“(pVaq),~(-pA—q) F

2
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Example 3.9. A proof of the sequent (pV¢q) A—p, (pVq)A—q, -pA—q F:

qA\—-p,pAN—qg,—pA—q F
qA=p,(gAN=q)V(pA—q),~pA—q
(@A=p),(PVq) N=q,~pA=q
(gN=p)V(pA=p),(PV G A-g-pA-g
(pVa)A=p,(pVag) A=g,~pA—q I

R2
R2

R2
Ra

Provability of a sequent Y F yields that Y is Hl-set. Thus is due to:

Theorem 3.1 (Soundness of HIPY w.r.t. Hl-sets). Let Y be an at least
two element finite set of wffs. If the sequent Y + is provable in HIPL,
then Y is a Hl-set.

Proof. Clearly, if Y I is a specific axiom of HIPL, then Y is a Hl-set.

Assume that Y U{A} and Y U {B} are Hl-sets. Thus each wff in ¥’
is consistent. Moreover, the set Y U {A V B} is inconsistent — otherwise
Y U {A} would be consistent or Y U {B} would be consistent. Suppose
that the set Y U{A V B} contains an inconsistent wff. Since each wif in
Y is consistent, it follows that A V B is inconsistent, and hence both A
and B are inconsistent. But in this case neither Y U {A} nor Y U{B} is
a Hl-set. A contradiction.

It is obvious that if X U{A} is a Hl-set and (A = B) is a theorem of
CPL, then X U {B} is a Hl-set. O

Theorem 3.1 together with corollaries 3.3, 3.2 and 3.1 yield:
Theorem 3.2.

1. If the sequent:
-CVp,~CV —pt

is provable in HIPY, then C' is a valid wff.

2. If the sequent:
CVvp,CV-phk

is provable in HIPL, then C' is an inconsistent wff.

3. If the sequent:
C,-Ct+

is provable in HIPY, then C' is a contingent wff.
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The next step is a non-standard one. We define provability of a wff in
terms of provability of a sequent of a strictly defined form. But, contrary
to what is usually done, we do not construe the provability of a wif C
as the provability of the sequent based on C or the negation of C' only.
The definition runs as follows:

Definition 3.8 (Proof of a wff). A HIPL -proof of a wff C' is a proof of
the sequent ~C'V p,—~C V —p F in HIPL.

Example 3.10. A proof of p — p:

p,p k-
(p A—p)Vp,—phk
(p A=p)Vp,(pA—p)V-ph
—(p—=p)Vp,(PA-p)V-ph
“(p—=p)Vp,~(p—p)V-phk

R2

2

2
Ro

Similarly, we define refutability in terms of provability of sequents of
strictly defined form. This time, however, we introduce two concepts.

Definition 3.9 (Refutation! of a wff). A HIPL refutationt of a wff C' is
a proof of the sequent C'V p,C'V —p + in HIPL.

Definition 3.10 (Refutation? of a wff). A HIPL_refutation® of a wff C
is a proof of the sequent C,=C' + in HIPL.

Example 3.11. A refutation® of =(p — p):

p,—p R
—(—pVp)Vp,pk
—(p—p)Vp, -k

“(p—=p)Vp,~(-pVp)V-phk
“(p—=p)Vp,~(p—=p)V-pk

2

R2
Ro

Example 3.12. A refutation? of p — ¢:

“p,pAq k- ¢p A —qb R
—pVqg,pA-qh
P> ¢,pAqh
p—q¢(p—qk

1

2
2
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The following holds:

Corollary 3.4.

1. If C has a HIPYproof, then C is valid.
2. If C has a HICPL—refutatz'onl, then C' is inconsistent.
3. If C has a HIP -refutation?, then C is contingent.

Proof. Immediately from Theorem 3.2 and definitions 3.8, 3.9, and 3.10.
O

3.3.2 The Completeness Issue

The system HIPL is complete with respect to finite Hl-sets.

A technical concept is needed.

Definition 3.11 (Normal form of a sequent). A sequent, Y +, is in the
normal form iff each C' €Y 1is in the disjunctive normal form.

Theorem 3.3 (Completeness of HIPL w.r.t. Hi-sets). Let Y be an at
least two element finite set of wffs. If Y is a Hl-set, then a sequent of
the form Y & is provable in HICPL.

Proof. Assume that Y F is in the normal form. Thus all the wifs in Y
are in DNF.

By the rank of a sequent Y F (in symbols: r(Y F)) we mean the
number of occurrences of the disjunction connective, V, in the wifs of Y.

Assume that Y is a finite Hl-set. Note that Y has at least two
elements.

Suppose that r(Y ) = 0. In this case, Y F is a specific axiom of the
system.

Suppose that r(Y ) > 0. Let r(Y F) =n.
Inductive hypothesis. If r(X ) < n and X is a Hl-set of wffs in DNF,

then the sequent X F is provable in HIPL.
If r(Y ) = n, where n > 0, the sequent Y I can be displayed as:

Al,...,Aj_l,Bl\/...\/Bk,Aj_H,...,Am H

where By, ..., By are elementary conjunctions and £ > 1. As Y is a
Hl-set, at least one of By,..., By is consistent.

Let B; be a consistent element of {By, ..., Bx}. Consider the sets Y’
and Y defined by:
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Y' = {A17"'7Aj—luBi7Aj+17'"7Am}
Y = {Al,...,Aj_l,Bl\/...\/Bi_l\/Bi+1V...\/Bk,Aj+1,...,Am}

Clearly, r(Y'F) < nand r(Y” F) < n. Both Y/ F and Y” I are in
the normal form.

If Y is a Hl-set, so is Y’. Thus, by the inductive hypothesis, the
sequent Y’ I is provable.

As for the sequent Y I, there are two cases to be considered.

Case 1. B1V ...V B;_ 1V Biy1 V...V By is consistent. Thus Y” is a
Hl-set. Hence, by the inductive hypothesis, the sequent Y I~ is provable.
But one can get Y F from Y’ F and Y” F by an application of rule Ry
and then, if necessary, of rule Ry.

Case 2. BiV ...V B;_1V B;11V ...V B is inconsistent. Thus all the
disjuncts (of the just considered disjunction) are inconsistent. If follows
that B; is CPL-equivalent to A;. (Clearly we have B; = A;. But, as all
the disjuncts of By V...V B;_1V Bj+1 V...V By are inconsistent, their
negations are valid and hence from A; = B1 V...V By, we get A; = B;.)
Thus one can get Y F from Y’ by Ro.

Now assume that Y F is not in the normal form. In order to complete
the proof it suffices to observe that each CPL-wff is CPL-equivalent to a
wif in DNF and thus one can always reach a wif from its DNF-counterpart
by applying rule Rs. O

As a consequence of Theorem 3.3, Corollary 3.4, and definitions 3.8,
3.9, 3.10 one gets:

Theorem 3.4.
1. A wff C is valid iff C has a HIP--proof.
2. A wff C is inconsistent iff C' has a HIPt-refutation'.
3. A wff C is contingent iff C' has a HIP--refutation?.

3.4 Final Remarks

The methodology used in the construction of the system HIPL, and
the basic idea of the completeness proof, are very much alike to the
methodology and idea applied, for different purposes, in [44].

As for this chapter, the homogeneity effect has been achieved by using
the notion of Hl-set as a conceptual unifier. It is worth to note that
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the concept of minimally inconsistent set could have been used for this
purpose as well. A set of wifs X is a minimally inconsistent set (Ml-set
for short) iff X is inconsistent, but each proper subset of X is consistent.
When one deals with CPL, inconsistency, validity and contingency of wffs
are expressible in terms of Ml-sets as follows:

o A wif C is inconsistent iff {C'} is a Ml-set.
o A wif C is valid iff {—=C?} is a Ml-set.
o A wif C is contingent iff {C,-~C} is a Ml-set.

Thus once we have a system which “calculates” Ml-sets, we get an al-
ternative solution. A system of this kind already exists (cf. [65]) and
will be presented in Chapter 10 of this book. Its applications to the case
considered are pointed out in section 11.3 of Chapter 11. The pros and
cons issue remains to be studied.

The last remark is this. As for Classical Logic and some non-classical
logics, one can define entailment by the clause:

(#) X entails A iff the set X U{—A} is inconsistent.

However, a set of wifs can be inconsistent in different ways. One can
differentiate between holistic inconsistency, minimal inconsistency, plain
inconsistency, and so forth. Given this, one can then define different
kinds of entailment, depending on the kind of inconsistency involved. In
particular, if “inconsistent” were replaced in (#) above with “holistically
inconsistent,” we would get a non-Tarskian consequence relation with
interesting properties. The system HIPL offers a proof-theoretic account
of entailment defined in this way (for the classical propositional case).
However, this is another story.
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Chapter 4

Three Problems Concerning
Knowledge and Belief

4.1 Introduction

Most philosophers agree that knowledge is not just true belief: it is either
true belief “plus something else” or true belief of some special kind. The
standard tripartite analysis of “knowing that” conceives knowledge as
true justified belief: one knows that p just in case p holds/is true, one
believes that p, and one is justified in one’s believing that p. After
the famous Gettier’s (|15]) paper, however, it has become clear that the
standard analysis is too broad, as it does not cope with counterexamples
presented first by him and then by others. We know that the “something
else” clause cannot be just being justified in believing. So the problem
has arisen: how to improve and/or supplement the third clause of the
standard tripartite analysis (and possibly the other clause(s) too) in
order to cope with Gettier-style counterexamples. Numerous solutions
were proposed, but no consensus has been reached yet.!!

In this chapter I show that the “true belief plus something else” ac-
count of propositional knowledge faces problems which reach beyond the
Gettier problem. When analysing the account, I leave the “something
else” part unspecified. This is a deliberate tactics, as the problems would

11 The story is widely known to philosophers (or at least should be), but not
necessarily so to logicians. An interested reader may consult, e.g., [41], or [22]. In
the last years the interest in the problem seems to decrease. It is even claimed that
the problem cannot have a satisfactory solution (cf., e.g., Floridi’s [12] paper).
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not disappear even if the “something else” clause were specified in a way
that the Gettier-type counterexamples would be blocked. I address these
problems in sections 4.4 and 4.5. They are due to two paradoxes which,
to my knowledge, have not been noticed yet. I coin them the Paradox
of Astounding Consequent and the Paradox of Doxastic Agency. Both
hold regardless of how the missing clause of the “true belief plus some-
thing else” account of propositional knowledge is specified. Section 4.6,
in turn, is devoted to an issue which emerges when propositional knowl-
edge is conceptualized as true conviction. Again, this issue is rooted in
some paradox, which I call here the Doxastic Misfortune Paradox.

4.2 The Standard Tripartite Account
of Knowledge Generalized

The “true belief plus something else” account of propositional knowledge
will be represented here by the following schema:

(TB**)  Kp=(pABp)AQp

where p is a propositional variable, K and B stand for the knowledge
operator and the belief operator, respectively, and €) is an unspecified
expression by means of which the “something else” component is worded.
It is neither assumed nor denied that the belief operator occurs in €2,
and similarly for other expressions and/or operators. Moreover, at the
moment we remain neutral in the controversy whether B in (TB™*) rep-
resents “weak” or “strong” belief.

Needless to say, leaving the 2-clause unspecified has a price. At the
formal level we are left with the possibility of a proof-theoretic analysis
only.

4.3 Logical Preliminaries

We remain at the propositional level, and the basic propositional logic
chosen is Classical Propositional Logic (hereafter: CPL). At the first
step, the language of CPL is enriched with the knowledge operator K
and the belief operator B. The concept of well-formed formula (wff for
short) is defined in the standard way. We use the letters p,q,r,s,...
for propositional variables, and the symbols =, A, V, —, = for the con-
nectives of negation, conjunction, disjunction, implications, and equiv-
alence, respectively. The letters A, C', D, possibly with subscripts, are
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metalanguage variables for wifs, and the letters X, Y are metalanguage
variables for sets of wifs. At the second step, we assume that the syntax
of the language is extended to the effect that expressions of the form QA
are wifs and, as such, can be constituents of complex wffs.!'? No further
assumptions concerning the syntactic form of {2 are made.

CPL-axioms are defined as usual. In each case considered Modus
Ponens and (unrestricted) Uniform Substitution are primary inference
rules. This allows us to apply all the derivable CPL-rules. Assumptions
and rules pertaining to epistemic operators will be specified in due course.

4.3.1 Notional and Attitudinal Readings
of Epistemic Operators

A formula of the form KA can be read either as: “it is known that A” (in
short: A is known), or as: “an agent knows that A.” Observe that under
the first reading (let me call it “notional”), formula KA speaks about
knowledge and says that A is an item of knowledge. When the second
reading comes into play, formula KA speaks about an agent’s attitude
towards A, identifying this attitude as knowledge-that. A formula of the
form BA can be read and analysed along similar lines: either notionally,
as: “A is a subject of belief,” or attitudinally, as: “an agent believes that
A.” Since we are primarily interested here in relations between concepts
and only secondarily between agent’s attitudes, the notional readings of
K and B will be adopted below by default unless stated otherwise.

When one works with alethic modal propositional logic based on
CPL, the possibility operator, ¢, can be defined in terms of the necessity
operator, [, by the equivalence:

<>A =-0-4 (4.1)
By analogy, the following formula:
-K-A (4.2)

can be regarded as expressing epistemic possibility of A. This is, how-
ever, a very specific and rather weak concept of epistemic possibility:
an epistemic possibility of a proposition amounts to the fact that the
negation of the proposition does not constitute an item of knowledge.!?

12" More formally, the following clause is added to the definition of wifs: (*) if A is
a wif, then QA is a wif.

13 An attitudinal account of formula (4.2) usually includes a reference to all that
is known by an agent (see, e.g., [21], p. 3.). This reference is lacking in our case.
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4.4 The First Problem

The first problem of the “true belief plus something else” account of
propositional knowledge I am going to point out here, is:

(I) For an epistemically possible proposition to hold, it suffices that its
classical negation is believed and satisfies the third clause of the
definition of knowledge, whatever this clause occurs to be.

4.4.1 The Paradox of Astounding Consequent

The problem arises due to the fact that one can derive from formula
TBT™*, the formula:

(PAC)  —K-pA (B-pAQ-p)—p

by using CPL-means only. Here is a derivation:'4

a.l. Kp=(pABp)AQp (TB*)

a.2. (pABp) AQp — Kp (a.1. CPL)
a.3. p A (BpAQp) = Kp (a.2. CPL)
ad.  p— (BpAQp— Kp) (a.3. CPL)
a.h. -p— (B-pAQ-p— K-p) (ad. p/—p)
a.6. (B pAQ=p—K-p)—p (a5 CPL)
a.7. (BpAQ-p)AN=-K-p—p (a6. CPL)
(PAC) —K-pA (B-pAQ-p)—p (a.7. CPL)

Recall that formula —=K—p reads: “p is epistemically possible,” which
amounts to: “—p does not constitute an item of knowledge.” Formula
B—p may read, in turn: “—p is a subject of belief” or simply “it is believed
that —-p.” The reading of 2—p remains unspecified, but its function is
clear: this is the negation of p that satisfies the “something else” clause
of the analysed definition of knowledge. So formula PAC says something
like: p is the case if p is epistemically possible, although this is the

14 The left column comprises numbers of lines of the derivation, the middle column
is the derivation itself, while the items of the right column describe where does the
formula of a line come from. When ‘CPL’ occurs in the right column together with
number(s) of line(s), it means that CPL-based rule (primary or derivable) has been
applied. CPL-rules used are not specified, since the transformations performed are
simple enough to make visible what rule has been applied at a given step. When
Uniform Substitution had been applied, the item of the third column informs what
was substituted for what.
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negation of p that is believed and satisfies the missing clause of the
definition of propositional knowledge. Or, to put it differently, if the
negation of p is not known, but nevertheless is believed and satisfies the
missing third clause, then — surprisingly — p is the case. Regardless of
the reading chosen, we arrive at an astounding consequence. In what
follows, formula PAC will be referred to as the Paradox of Astounding
Consequent.

Observe that the above derivation of PAC employs CPL-means only
and does not rely on any specific assumptions concerning the underlying
logics of knowledge and belief.

4.4.2 The Issue of Consistency of the Antecedent of PAC

A deductive inference ensures the transmission of truth: if only all the
premises are simultaneously true, so is the conclusion. It happens, how-
ever, that an inference is deductive although its premises cannot be si-
multaneously true. An inference from a proposition and its negation to
any proposition is deductive in view of Classical Logic and, as such, en-
sures the transmission of truth from premises to the conclusion. Yet, it
does it for a tricky reason: the premises cannot be simultaneously true.
So the transmission of truth principle is not violated, but the truth of
the conclusion is not ensured. If the underlying logic is not paracon-
sistent, each inference from an inconsistent (in view of the logic) set of
premises is deductive, but its deductiveness does not provide a warranty
of the truth of the conclusion. Thus when we reason to the consequent of
an implication whose antecedent is inconsistent, and this is the implica-
tion that makes our inference deductive, we do not provide an argument
in favour of the truth of the conclusion. So the question arises: is the
antecedent of PAC consistent?

Clearly, what one would like to have is consistency in view of the
underlying logic of K, B, and 2. Yet, since {2 has been left unspecified,
no semantic analysis is possible. What is possible, however, is a sketchy
proof-theoretic analysis. To this end, it is convenient to identify a logic
with the derivability relation determined by its axioms and primary in-
ference rules.

Suppose that we have a formal language that satisfies the conditions
specified in section 4.3 above. Let Azp be a non-empty set of wifs of
the language that contains all the CPL-axioms and possibly some other
formulas. Elements of Az, will be called L-azioms. Let IIj, be a set
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of primary inference rules whose elements are Modus Ponens, Uniform
Substitution, and possibly some other rules, called specific L-rules.

The expression X Fj A reads “A is L-derivable from X" X b A
holds iff there exists at least one derivation of A from X U Az, such
that the rules employed belong to II;,. Thus k7 A claims that A can
be derived from L-axioms by means of inference rules belonging to Iy,
and thus reads: “A is a theorem of L.” Let L abbreviate p A —p. We say
that a set of wifs X is L-inconsistent iff X F; L holds; otherwise X is
L-consistent. A wit A is L-inconsistent iff the set {A} is, and similarly
for L-consistency. A wif A is called L-refuted iff ¥y A, that is, A is not
a theorem of L.

Having all these auxiliary concepts at hand, we can now reduce the
consistency issue of the antecedent of PAC, that is, of the formula:

—K-p A (Bp A Q-p) (4.3)

to questions of the form: ‘What property the underlying logic L must
not have in order to ensure L-consistency of formula (4.3)7”

There are many possible yet correct answers to this general ques-
tion. For example, assume that the relation Fj satisfies the following
condition:

(&) ifXU{A} Fr L, then X A — L.

and that L is closed under the following rule of elimination of double
negations: %
A[-=C]
A[C]
which allows for the replacement of each occurrence of =—C' in A with
an occurrence of C.

(E--)

Now the answer is: (4.3) is L-consistent if the following formula
BpAQp— Kp (4.4)

is L-refuted, that is, is not a theorem of L. For assume that formula (4.3)
is L-inconsistent, that is, the following holds:

“K-pA (B-pAQ-p) b L

15 Observe that this category includes also wifs which are L-contingent, that is,
are neither L-inconsistent nor L-derivable.

16 This assumption, as well as the previous one, is not trivial, as € has been left
unspecified.
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Thus, by (é):
Fr, = K—p A (B-p A Q—p) — L

Therefore, as FcpLC 1, we have:
Fr 2(BpAQ—-p—K-p) — L

and hence:
Frp =L = (BpAQ—p— K-p)

Since Fr =L holds (recall that L abbreviates p A —p), we get:
Fr Bp AQ—p — K-p
But L is closed under Uniform Substitution. Thus we also have:
Fr, Bo—p A Q—=—p — K=—p

By assumption, L is closed under the rule E__ of elimination of double
negations. Hence:
Fr BpAQp — Kp

It follows that if formula Bp A Qp — Kp is not a theorem of L, but L is
closed under rule E--, and the condition (&) is satisfied w.r.t. L, then
the antecedent of PAC, that is, the formula:

=K=p A (B—p A Q—p)

is L-consistent.

By assumption, Fcpp C Fr. Hence if the formulas:
Bp — Kp (4.5)

Op — Kp (4.6)

were theorems of L, formula (4.4) would be a theorem of L. Thus when
(4.4) is L-refuted (which, in the current setting, ensures L-consistency
of the antecedent of PAC), formula (4.5) is L-refuted or formula (4.6) is
L-refuted. But if (4.5) is L-refuted, so is:

Kp =Bp (4.7)
and if (4.6) is L-refuted, the following formula:

Kp = Qp (4.8)
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is L-refuted as well. Hence the underlying logic that ensures the consis-
tency of formula (4.4) does not reduce knowledge to belief or does not
identify knowledge with the Q-clause of the definition TBT, whatever the
clause is. On the other hand, if (4.7) were a theorem of L, formula (4.4)
would be L-inconsistent, and similarly for (4.8). In both cases PAC would
be “neutralized” in the sense that a deductive inference based on it and
leading to p is not an argument in favour of the truth of p. However,
this is a kind of Pyrrhic victory: K collapses into B or into €. Certainly,
no philosopher who subscribes to a tripartite account of propositional
knowledge would be happy with this.

Remark 4.1. Observe that if formula (4.4) is a theorem of L and neither
B nor 2 is supposed to be factive (i.e. Bp — p and Qp — p are L-refuted),
then PAC is neutralized, but it can happen that a false proposition, A,

is simultaneously known, since BA A A holds, and not known, because
TB™ still holds.

4.4.3 Consequences for the Standard Tripartite Account

The standard, tripartite account of propositional knowledge can be rep-
resented by the following schema:

(TBJ) Kp=(pABp)Alp

where J stands for the “being justified in believing” clause. Clearly, by a
reasoning analogous to that justifying formula PAC, one gets:

—-K-pA (B-pAJ=p)—p (4.9)

which is equally counter-intuitive as PAC. The following exemplary in-
stance of formula (4.9) illustrate this point:

If it is not known that Martians do not exist, but it is believed, and
justifiably so, that Martians do not exist, then Martians exist.

It seems that the above considerations provide arguments against
the standard, tripartite analysis of propositional knowledge which are
less loaded than the Gettier-style ones.

4.5 The Second Problem

The second problem of the “true belief plus something else” account of
propositional knowledge I am pointing out in this chapter, is:
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(IT) Knowing that a proposition holds reduces to believing that it holds
together with believing that the proposition satisfies the third clause
of the definition of knowledge, whatever this clause occurs to be.

Thus, generally speaking, the analysed account of propositional knowl
edge boils down to a purely doxastic account.

4.5.1 The Conceptual Setting

In contradistinction to the first problem, the second one is strongly de-
pendent upon specific assumptions concerning the underlying logics of
knowledge and belief. But before I will list them, let me pay attention
to some immediate CPL-consequences of the (schematic) definition of
knowledge TB™.

From formula TB™ one gets the epistemic version of the (alethic)
modal formula T

(Tx) Kp—p
Thus knowledge is factive/truthful. TB™® also gives:
(KB1) Kp— Bp

Formula KB1 links knowledge and beliefs, making knowledge a species
of belief. It frequently occurs in considerations devoted to multimodal,
epistemic-doxastic logics, often (but not always) in the role of a “bridge
axiom” of such a logic.

The belief operator B. As for the belief operator, the doxastic versions
of modal formulas K and D will be employed as premises:

(Kg) B(p—q) — (Bp— Bg)
(Dg) Bp— —B-p
The following Rule of Necessitation for the belief operator is adopted:

A

BA (NVB)

It is well-known that Kg, in the presence of Ng, makes the following
formula provable:

B(p A q) =BpABg (4.10)
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and that the monotony rule Mg for the operator B:

A—C
BA — BC

is derivable in the above setting.

(Mg)

The knowledge operator K. In the case of the knowledge operator,
the formulas:

(Kx)  K(p—4q) = (Kp— Kq)
(By) —-p — K=Kp

will perform the role of premises.

In addition, the Rule of Necessitation for the knowledge operator:

A

KA

will be adopted. Needless to say, the monotony rule My for the operator
K:

(Nk)

A—=C
KA — KC (M)

is now derivable.

Formula By can be read as follows: if —p is the case, then it is known
that it is not known that p. In other words, if p is not the case, then it
is known that p does not constitute an item of knowledge. Viewed this
way, formula By complements the claim of the “factivity” or truthfulness
formula Tk, although these formulas are proof-theoretically independent
in the current setting.

As for normal modal propositional logics (which we operate with
here), By is proof-theoretically equivalent to any of the following formu-
las:

(Bk) p— K=K-p
(By) —K=Kp—p

which, in turn, are epistemic versions of the Brouwerian formula/axiom
B.17
The positive and negative introspection formulas for knowledge, that
is:
17 By the way, under the notional reading of its respective parts, formula By says:

() If it is epistemically possible that p is an item of knowledge, then p is true.
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(4k)  Kp—KKp

(5«)  —Kp— K=Kp
are neither accepted nor rejected at the moment; no result presented in
this section necessarily rely on them.

Linking formulas. We will be using as premises the following linking
formulas:

(KB1) Kp — Bp
(KB2) Bp— KBp
(BK2)  Kp — BKp.

Formula KB1 ensures that whatever is known, is also believed. According
to KB2, if a proposition is a subject of belief, then the proposition saying
this is an item of knowledge. Formula BK2 says that if a proposition is
an item of knowledge, then the proposition claiming its being an item of
knowledge is a subject of belief.

Clearly, KB2 and KB1 jointly make provable the following formula:
(48) Bp—BBp

which expresses the so-called positive introspection of beliefs.

4.5.2 A Reduction to a Purely Doxastic Account:
The Paradox of Doxastic Agency

Our second problem is rooted in the derivability of the following formula:
(PDA)  Kp=BpABQp

in the current setting, that is, from formula TB™® and the set of formulas
{Kg,Dg, Kk, By, BK2,KB1, KB2}.

According to formula PDA, a proposition p is an item of knowledge
just in case p is a subject of belief and it is believed that the 2-condition

When By is a theorem/aziom of an epistemic logic, its claim pertain to any proposi-
tion. In this case it ensures that:

(A) Each proposition of which it is epistemically possible that it is an item of
knowledge, is true.
As formulas By and By are CPL-equivalent, one may conclude that the principle (A)
is ensured when formula By is a theorem of an epistemic-doxastic logic in question.
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is satisfied w.r.t. p. Thus the TB™ account of propositional knowledge
reduces to a purely doxastic account. The acronym PDA refers to Paradoz
of Doxastic Agency. Formula PDA is paradoxical in its allowing to create
propositional knowledge out of false beliefs concerning both the subject
matter and the fulfilment of the (-clause.

An Exemplary derivation of PDA. For brevity, the derivation pre-
sented below employs the rules Mg and My, and uses formulas (4.10)
and 4g as premises. These rules and formulas, however, are derivable in
the setting described in section 4.5.1.

b.1.
b.2.
b.3.
b.4.
b.5.
b.6.
b.7.
b.8.
b.9.

b.10.
b.11.
b.12.
b.13.
b.14.
b.15.
b.16.
b.17.
b.18.
b.19.
b.20.
b.21.
b.22.
b.23.
b.24.
b.25.
b.26.
b.27.
b.28.
b.29.

Kp = (p A Bp) AQp
Kp — (p ABp) A Qp

BKp — B((p A Bp) A Qp)
B(pAgq) =BpABg
B(pAg) = BpABg

B((p A Bp) AQp) — B(p A Bp) ABQp
BKp — B(p A Bp) A BQp
B(p A Bp) — Bp A BBp
BKp — (Bp A BBp) A BQp
BKp — Bp A BQp

Kp — BKp

Kp — Bp A BQp

(p A Bp) AQp — Kp

B((p A Bp) A2p) — BKp
Bp ABg — B(pAq)

B(p A Bp) A BQp — B((p A Bp) A Qp)
B(p A Bp) A BQp — BKp
Bp A BBp — B(p A Bp)
(Bp A BBp) A BQp — BKp
Bp — BBp

Bp A BQp — BKp

-p = K=Kp

Kp — Bp

K-=Kp — B=Kp

-p — BﬁKp

-B=Kp —p

Bp — —-B—p

BKp — —-B-Kp

BKp — p

(TB*®)
(b.1. CPL)

(b.2. Mg)

(4.10)

(b.4. CPL)

(b.5. p/(p A Bp), q/Qp)
(b.3., b.6. CPL)

(b.5 q/Bp)

(b.7., b.8. CPL)

(b.9. CPL)

(BK2)

(b.11., b.10. CPL)

(b.1. CPL)

(b.13. Mg)

(b.4. CPL)

(b.15. p/(p A Bp),q/2p)
(b.16., b.14. CPL)
(b.15 ¢/Bp)

(b.17, b.18 CPL)

(4
(
(B
(
(
(
(
(D
(
(

B)
b.20., b.19. CPL)

k)
KB1)
b.23. p/=Kp)
b.22., b.24. CPL)
b.25 CPL)

B)

b.27 p/Kp)
b.28., b.26. CPL)
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b.30. KBKp — Kp (b.29. M)
b.3.  Bp— KBp (KB2)

b.32. BKp — KBKp (b.31. p/Kp)
b.33.  BKp — Kp (b.32., b.30. CPL)
b.34. BpABQp — Kp (b.21., b.33. CPL)
(PDA) Kp=BpABQp (b.34., b.12. CPL)

The set of premises explicitly used comprises formula TB** and two
subsets: {Dg, By, BK2,KB1,KB2} and {(4.10),4g}. Formula 4g stems
from formulas KB1 and KB2, while in order to have formula (4.10) one
needs formula Kg and the Rule of Necessitation Ng (which we both
have). Modal inference rules explicitly used are Mg and Mk. The former
is derivable once we have formula Kg and the Rule of Necessitation Ng
(as we do), while the latter is derivable when we have formula Kk and the
Rule of Necessitation Nk (which we have as well). (By the way, formula
KB1 is superfluous in the sense of being an immediate consequence of
TB™®.) Thus one can say that PDA can be derived from formula TB**
and the set of formulas {Kg, Dg, Kk, B, BK2, KB1, KB2} by using CPL-
means as well as the necessitation rules Ng and Nk.

4.5.3 Andrew’s Muddle

Is PDA paradoxical in the sense of allowing for contradictions? Certainly,
it is not an antinomy. However, consider the following hypothetical situa-
tion. We are speaking about beliefs and these, at least at most accounts,
need not be factive (one can truly believe a false proposition). Let p
be a false proposition such that a cognitive agent named, say, Andrew,
believes that p is the case and believes, mistakenly but still, that the £2-
clause is satisfied w.r.t. p. So the conditions Bp and BQp are true with
regard to Andrew. By PDA we may conclude that Andrew knows that
p. But the “true belief plus something else” account of knowledge is still
in place, and, as from formula TB* we get Kp — p and hence (in CPL)
—p — —Kp, the (assumed) falsity of p gives, by Bivalence, the truth of
—p and thus the falsity of Kp: it is not the case that Andrew knows that
p. So does Andrew know that p, or not? Both. This is a conclusion
which nobody — leaving dialetheism apart — may want to have.

Leaving aside our Andrew (and attitudinal readings of the respective
operators too), we can summarize the situation as follows: if a false
proposition, say, p, is believed and it is mistakenly believed that the -
clause of a definition of propositional knowledge is satisfied with respect
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to p, then the proposition p both constitutes and item of knowledge and
does not constitute an item of knowledge.

Remark 4.2. The reasoning presented above is based on the assumption
that false propositions can be subjects of belief. If we block this possibil-
ity, the problem does not arise. As it is well-known, there are epistemic-
doxastic logics in which beliefs collapse to knowledge, i.e. Bp — Kp
holds, and thus, assuming the factivity of knowledge, beliefs become fac-
tive as well. However, indistinguishability of beliefs and knowledge is a
vice rather than a virtue of an epistemic-doxastic logic. No doubt, when
we directly reduce beliefs to knowledge, the paradoxicality of PDA dis-
appears. Such a move, however, is tantamount to depriving beliefs the
basic property that, traditionally, distinguishes them from knowledge.
And resolving a local conflict by dropping nuclear bombs is, for sure, not
the best idea.

4.5.4 Consequences for the TBJ Account of Propositional
Knowledge

It is obvious that when one operates with the standard, tripartite ac-
count of propositional knowledge (depicted by the formula TBJ), in which
the Q-clause boils down to the justification requirement, then, ceteris
paribus, one gets:

Kp=BpABlp (4.11)

But from TBJ and (4.11) one immediately gets (by CPL):

Bp ABJp= (pABp)Alp (4.12)

and this gives, int. al.:
Bp ABJp—p (4.13)
Bp ABJp — Jp (4.14)

Assuming that being justified in believing that p yields believing that p,
that is, the following holds:

BJp — Bp (4.15)
we end with the following formulas:

Blp — Jp (4.16)
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Blp —p (4.17)

which ensure that believing in being justified in believing yields being
justified in believing, and that believing in being justified in believing
warrants that what is believed, is the case.'® Needless to say, such con-
clusions are hardly acceptable. Yet, logical deduction preserves truth but
not necessarily intuitiveness, so let us take (4.16) and (4.17) for granted.
Observe that from (4.17), (4.15), (4.16), and TBJ one immediately gets:

BJp — Kp (4.18)

and this, by (4.11), gives:
Kp =BlJp (4.19)

According to formula (4.19), the tripartite account of propositional
knowledge, TBJ, reduces to believing in being justified in believing. At
first sight, it may look even appealing. However, (4.19) is not a “new”
definition of knowledge, but characterizes a property of the standard tri-
partite concept of knowledge it exhibits assuming that formula (4.15)
holds w.r.t. the components of the TBJ account. The Gettier counterex-
amples are still in place, not to mention the issues described in section
4.4 of this chapter.

4.5.5 The Scope Issue

The formula:
(By) —p—K-Kp

plays a key role in the derivation of PDA presented above. As we remarked
in section 4.5.1, in the current setting formula By is proof-theoretically
equivalent to formula Bk as well as to formula B, which, in turn, are
epistemic versions of the Brouwerian formula/axiom B. Thus, taking
into account the derivation of PDA presented above, we may say that the
second problem arises when the formula TB*? is the starting point, while
the underlying epistemic-doxastic logic contains at least the logic (KB)k
in its purely epistemic component, at least (KD)g in the doxastic compo-
nent, and the linking formulas KB1, KB2 and BK2 as theorems/axioms.

'8 When the reading of Jp is “p is justified,” we get: (a) believing that p is justified
yields that p is justified, and (b) believing that p is justified implies that p is the case.
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Although the presence of formula Bk in the epistemic component is
sufficient here, the negative introspection formula 5k will do as well.'

Interestingly, in both cases the factivity formula Ty plays no role.?"

4.6 The Third Problem

4.6.1 The Background

The appearance of the second problem described above heavily depends
on the strength of the underlying epistemic logic in question: if an epis-
temic version of the Brouwerian formula/axiom B or the epistemic ver-
sion of formula 5 are theorems/axioms of the logic, then, assuming that
the epistemic-doxastic logic we operate with satisfies the remaining con-
ditions specified above, the second problem shows up.

However, formulas 5x and Bk are almost unanimously rejected by
epistemologists. The reasons are diverse. There is no space (and need)
for presenting them in detail. Since the criticism of 5k as a principle
which applies to human cognitive agents is better known, let me only
mention two arguments against Bk. The first, whose idea dates back to
[21], is best summarized in [51] as follows:

“... the agent should not be ‘allowed’ to create knowledge
out of thin air. ([51], p. 121)”

One can argue, however, that under the notional reading of its respective
parts formula By is tenable (see footnote 7 above). The second argument

against the formula in question, due to [54], is based on the observation
19 Asit is well-known (cf., e.g., [16], p. 114; the observation is due to [53]), formula
5k together with formulas Dg and KB1 yield the Paradox of The Perfect Believer,

that is, the formula:
BKp — Kp (4.20)

Now take a look at the derivation of PDA already presented above. Delete from it
lines from (b.22) to (b.33), put instead a derivation of (4.20) based on formulas 5k,
Dg and KB1, and then continue as in the “old” derivation. The result is a derivation
of PDA relying on the same premises as the “old” one, with the exception of formula
By, now replaced with the negative introspection formula 5« (although the linking
formula KB2 now disappears, it is needed in order to obtain 4g).

20 Of course, in the current setting 5k together with Tk yields Bj. Thus one
can derive the latter from 5k and Tk, and then continue as in the case of the first
derivation of PDA presented above, obtaining an unnecessarily tedious derivation of
PDA.
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that Bk induces symmetry as the property of epistemic alternativeness
in Kripke-style (epistemic) models, which is both unintuitive and leads
to paradoxical consequences. But it cannot be said that B is always
ignored in logico-philosophical considerations. Floridi’s “logic of being
informed” (cf. [13]) provides a notable example here.

The attitudes of logicians towards 5k and Bk are more nuanced.
Both formulas are theorems of (epistemic) S5. Despite all known con-
ceptual deficiencies of S5 interpreted epistemically, the formalism of S5
is still very often applied in logical considerations concerning knowledge,
in particular knowledge dynamics and/or collective knowledge (cf. [52]).
On the other hand, the remarkable result of [50], according to which:
(a) any epistemic-doxastic logic which has formulas Dg, 5k, KB1, and
KB3 as theorems,/axioms?!, has the formula Bp = Kp as a theorem (that
is, does not distinguish between belief and knowledge), but (b) for each
proper subset of {Dg, 5k, KB1,KB3}, models can be build which invali-
date Bp = Kp, shows that having (S5)k as a component of an epistemic-
doxastic logic can be, to put it mildly, risky. When we add to this
arguments against Bk, it becomes natural to consider, epistemically in-
terpreted, modal logics which “lie between” S4 and S5 as candidates
for epistemic components of an epistemic-doxastic logic. As Wolfgang
Lenzen, much earlier, put it:

“... the logic of knowledge must be at least as strong as
system S4.2 (...). Furthermore, the logic of knowledge must
be at most as strong as system S4.4 ...” ([27], p. 82)

“... ‘the’ logic of knowledge most probably is S4.2.” ([27],
p. 83)

Recall that the logic of knowledge S4.2, that is, (S4.2)k, is the result of
adding to (S4)k the formula:

(4-2K) —|K—|Kp — K—|K—|p

as a new axiom.?? Logic (S4.4), in turn, can be characterized as the
extension of (S4)k by the axiom:

(4.4k) p — (=Kp — K=Kp)

21 Formula KB3 is of the form: Bp — BKp.
22 For the history, different formalizations, semantics, and other applications of
the system S4.2 see. e.g., [8].
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Since neither 5k nor By are theorems of these logic as well as log-
ics which “lie between” them, we cannot say that the second problem
(presented in section 4.5) arises when one takes any of such logics as
the epistemic component. This is the good news. But there is also a
bad one: another problem shows up. This is due to some results of [19],
[28], and [1]. Generally speaking, these results show that operating with
(S4.4) or a weaker epistemic logic as the underlying logic of the knowl-
edge operator may lead to the emergence of a variant of the “knowledge
as true belief” account of propositional knowledge. By and large, this
variant conceptualizes propositional knowledge as true conviction.

In order to present the relevant results in a concise, yet exact way,
let me introduce some auxiliary notions first (these notions are not taken
from the papers referred to above).

A wif A of the language of a propositional epistemic-doxastic logic
is:

e a x-formula iff the belief operator B does not occur in A,

e a 7-formula iff the knowledge operator K does not occur in A,

e a p-formula iff both the knowledge operator K and the belief oper-
ator B occur in A.

Note that the formulas in which neither K nor B occur, are both x-
formulas and n-formulas. This is intended.

We assume that an epistemic-doxastic logic in question has interac-
tion axioms, which, syntactically, are u-formulas. We do not assume,
however, that each p-formula being a theorem of L is an interaction
axiom.

The epistemic component of a propositional epistemic-doxastic logic
L comprises all the theorems of L which are k-formulas. The dozastic
component of the logic, in turn, consists of all the n-formulas which are
its theorems.

Let L be an epistemic-doxastic logic based on CPL (henceforth: episte-
mic-doxastic logic). Let D be a formula of the language of L having the
form Kp = A, where K does not occur in A and B occurs in A. We
say that the knowledge modality K is reducible in L to the belief modal-
ity B by formula D iff: (a) the set of theorems of L is included in the
set of formulas which are L-derivable from the doxastic component of
L together with the interaction axioms of L as well as the formula D,
and (b) the set of n-formulas which are L-derivable from the doxastic
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component of L together with the interaction axioms of L as well as the
formula D is included in the doxastic component of L. (This concept is
borrowed from [19], although its definition has been slightly reformulated
here.) Reducibility so conceived is a kind of definability in a multimodal
setting.

The result of [19] which is relevant for the purposes of this chapter,
can now be worded as follows:

(%) if L is an epistemic-doxastic logic closed under the rules of
necessitation Ng and Nk such that: (i) the doxastic compo-
nent of L is the logic (KD45)g, (ii) the epistemic component
of L is included in the logic (S4.4)k and (iii) the linking for-
mulas KB1 and KB2 are theorems of L, then the knowledge
modality K is reducible in L to the belief modality by the

formula
Kp=pABp (4.21)

For the original formulation, cf. [19], Theorem 4.2. As a matter of fact,
(%) expresses only the first claim of the theorem. The theorem also states
that one gets reducibility of the above kind if the epistemic component
is isomorphic to an alethic modal propositional logic that is not stronger
than S4.4.

As (S4.2)k is included in (S4.4)k, the result () pertains also to the
case in which the epistemic component is just (S4.2)k, “the” logic of
knowledge according to Lenzen’s claim.

Aucher (cf. [1], Theorem 5.6.4), in turn, observed that:

(xx) if L is an epistemic-doxastic logic closed under the rules
of necessitation Ng and Nk such that: (i) the doxastic com-
ponent of L is the logic (KD45)g, (ii) the epistemic compo-
nent of L is the logic (S4.4)k, and (iii) the linking formulas
KB1 and KB2 are theorems of L, and (iv) the following link-
ing formula:

(KB3) Bp— BKp

is a theorem of L, then the knowledge modality K is explicitly
defined in L in terms of the belief modality B by means of
the formula (4.21), which is a theorem of L.?3

23 Again, this is only the first part of the theorem (whose proof Aucher credits
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In both cases, (x) and (*x*), the doxastic component of L is the logic
(KD45)g. This logic is commonly regarded as the logic of a special kind
of belief, namely strong/firm belief or conviction. Taking this into ac-
count, we may say that assumptions concerning the underlying epistemic-
doxastic logic yield that the “knowledge as true conviction” account of
propositional knowledge comes into play, directly (due to (xx)) or indi-
rectly (because of (x)). One may wonder whether such an account is a
variant of the “true belief plus something else” account. Yet, regardless
of the answer, the former raises some new issue.

4.6.2 The Third Problem Itself

The third problem I am going to point out in this chapter, is:

(ITIT) The “knowledge as true conviction” account of propositional knowl-
edge disqualifies each conviction concerning an epistemically unre-
solved matter.

We face this problem due to the appearance of the Doxastic Misfor-
tune Paradox characterized below.

4.6.3 The Doxastic Misfortune Paradox

For clarity, let us use the letter C for the conviction operator. The lan-
guage of analysis differs from that described in section 4.3 in the presence

to Lenzen). The second part speaks about the lack of explicit definability of this
kind is some weaker epistemic-doxastic logics (cf. [1], p. 121). By the way, as for the
theoremhood of formula (4.21), the linking formula KB2 is superfluous. The formula:

is derivable in any epistemic-doxastic logic closed under the rule Ng which has
(KD45)g as the doxastic component, (S4.4)k as the epistemic component, and the
linking formulas KB1 and KB3 as theorems (cf. [63], p. 313-314). As for (KD45)g,
formulas -B—Bp and Bp are equivalent. Thus we get:

p — (Bp = Kp) (4.23)

and hence
pABp— Kp (4.24)

On the other hand, (4.23) together with Tk gives:
Kp — pABp (4.25)

Having (4.23) and (4.25), we also have (4.21).
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of C instead of B, and the disappearance of ). The remaining assump-
tions concerning logical preliminaries hold accordingly. The formula:

(TC) Kp=pACp

expresses the “knowledge as true conviction” account of knowledge that.

Now observe that the following formulas:
“K-pAC—p—p (4.26)

are derivable from the formula TC. Here is a derivation of formula
(4.26):24

c.1. Kp=pACp (

c.2. pACp— Kp (c.1. CPL)
c.3. p — (Cp — Kp) (c.2. CPL)
c4. -p — (C-p = K=p) (c.3. p/—p)
c.b. —(C-p — K-p) - p (c4. CPL)
c.6. CpA—-K-p—p (c.5. CPL)
(4.26) —-K-pAC—p—p (c.6. CPL)

The derivation of formula (4.27) proceeds analogously, viz.:

c.7. Kp=pACp (TC)

c.8. pACp— Kp (c.7. CPL)
c.9. p — (Cp — Kp) (c.8. CPL)
c.10.  p— (-Kp — —Cp) (c.9. CPL)
c.1l.  —(=Kp —» —-Cp) — —p (c.10. CPL)
(4.27) -KpACp— —p (c.11. CPL)

Note that in both cases no specific assumption concerning the be-
haviour of the conviction operator C is used. Only CPL-means are em-
ployed.

Let us now introduce the concept of knowing whether, in symbols KV.
This will be done in the standard way, by means of the equivalence:

KYp = KpV K-p (4.28)

24 This derivation is very much alike the derivation of formula PAC given in section
4.4, but in order to make this section self-contained we present it here anyway.
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The expression =K%¥p can thus be read informally as “p is epistemically
unresolved.” Clearly, we have:

—K%p — —Kp (4.29)

and
—\Kwp — =K-p (4.30)

Given all this, the following formula becomes derivable:
(DMP)  =K"p — (Cp — p) A (Cp — —p)
Here is a (exemplary) derivation of DMP:

c12. —K-pAC-p—p
c.13.  —K-p = (C—p — p)
c.14.  —=K%"p — =K-p 4.30)

c.15.  =K%¥p — (C—p — p) c.14., ¢.13. CPL)

(4.26)
(
(
(
c.16. —KpACp— —p (4.27)
(
(
(
(

c.12. CPL)

c.17.  —=Kp — (Cp — —p) c.16. CPL)

c.18.  —=K%p — —Kp 4.29)

c.19. —-K%¥p — (Cp — —p) c.18., ¢.17. CPL)
(DMP) —KYp — (C—p —p) A (Cp — —p) (c.15., ¢c.19 CPL)

According to formula DMP, if it is not known whether p (i.e. neither
p nor —p is known), then conviction that —p, if held, is wrong, and
conviction that p, if held, is wrong. In other words, if it is not known
whether p, then p is the case if —p is strongly believed, and —p is the case
if p is strongly believed. To speak generally, when p remains epistemically
unresolved, each conviction about its logical value, if held, is wrong.
Formula DMP is paradoxical in its disallowance for having true convictions
about a subject matter which is not epistemically resolved. It seems
appropriate to coin it the Doxastic Misfortune Paradox, which explains
the acronym DMP.

As the derivation of DMP presented above illustrates, one can get it by
CPL-means only, without relying on any specific assumptions concerning
the logic that governs the conviction operator.

4.6.4 Consistency of the Antecedents

Assuming that derivability in L satisfies the condition (&) (see section
4.4.2) and is closed under the rule £, of elimination of double negations,
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the antecedents of formulas (4.26) and (4.27) are L-consistent if L differ-
entiates between conviction and knowledge, that is, formula Cp — Kp is
not a theorem of L.

Concerning the issue of consistency of the antecedent of DMP, the
antecedent is L-consistent if the formula -K—-p — Kp is L-refuted. But
the formula is not a theorem of (S5)k, and hence of epistemic logics
included in it.

4.7 Summary and Conclusion

Let us summarize. In the case of a tripartite (standard or not) account
of propositional knowledge, the following problems were diagnosed:

(I) For an epistemically possible proposition to hold, it suffices that its
classical megation is believed and satisfies the third clause of the
definition of knowledge, whatever this clause occurs to be.

(IT) Knowing that a proposition holds reduces to believing that it holds
together with believing that the proposition satisfies the third clause
of the definition of knowledge, whatever this clause occurs to be.

Problem (I) arises due to the Paradox of Astounding Consequent
(recall that by € one expresses the third, “missing” clause of a tripar-
tite definition of propositional knowledge; K and B stand for knowledge
operator and the belief operator, respectively):

(PAC) =K=p A (B—\p A Q—\p) —p

One can get PAC from the formula expressing the generalized tripartite
account:

(TB™)  Kp=(pABp)AQp

by CPL-means only: no specific assumptions concerning K, B and €2 are
needed.

Problem (II) stems from what I have called the Paradox of Doxastic
Agency:

(PDA)  Kp=BpABQp
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However, PDA is not just a CPL-consequence of TB™*, but relies on some
specific assumptions concerning knowledge, belief, and their interactions.
If you do not share these assumptions, problem (II) does not bother you.

As for the “knowledge as true conviction” account, the following prob-
lem was diagnosed:

(ITIT) The “knowledge as true conviction” account of propositional knowl-
edge disqualifies each conviction concerning an epistemically unre-
solved matter.

Problem (III) arises due to what I have dubbed the Doxastic Mis-
fortune Paradox (recall that K" refers to knowledge-whether, while C
stands for the conviction operator):

(bMP)  —K“p — (C—p — p) A (Cp — —p)

DMP does not rely on any specific assumptions concerning the conviction
operator: one gets it by CPL-means if only knowledge is defined as true
conviction and knowing-whether is conceived in the standard way.

This is the diagnosis. But a diagnosis should be accompanied with
recommendations. My recommendation is a modest one: beware the
problems pointed out in this chapter when aiming at a satisfactory anal-
ysis of propositional knowledge.

Having this in mind, in the next chapter I propose a non-standard
account of epistemic logic broadly conceived.



Chapter 5

Being Epistemically
Permitted

5.1 Introduction

We are often confronted with a number of alternative accounts of how
things are, yet without knowing which of the accounts, if any, is the right
one. These accounts disagree on some issues and agree on others. Despite
discrepancies, however, some facts still remain known, some states of
affairs are considered impossible, and some statements are epistemically
permitted while other are not.

In this chapter I define the relation “a declarative sentence is epistem-
ically permitted by a set of possible worlds” and I characterize its basic
properties. The possible worlds in question are supposed to represent
alternative accounts of how things are. For this reason I dub the rela-
tion “epistemic permittance” or “e-permittance” for short. The definition
proposed is an explication of the corresponding intuitive notion of being
epistemically permitted, taken in one of its meanings. Basic intuitions
are presented in section 5.1.2 below.

The concept of epistemic permittance enables an introduction, as a
by-product, of some concept of knowledge free of the drawbacks pointed
out in the previous chapter. However, this is only one of possible gains
one gets from an account of epistemic permittance.

In order to make this chapter self-contained, let me start with a short
description of the basic logical tools used.
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5.1.1 Logical Preliminaries

We remain at the propositional level only. We consider a non-modal
propositional language, £. The vocabulary of £ includes a non-empty
set P = {p, q,r,...} of propositional variables, the propositional constant
1 (falsum), and the connectives =, V, A, —. Well-formed formulas (wffs
for short) of £ are defined in the usual manner. We shall use the letters
A, B, C, D, ..., with subscripts if needed, as metalanguage variables for
wifs of £. The letters X, Y, ... are metalanguage variables for sets of
wifs of L.

The connectives, as well as L, are understood, at the truth-functional
level, as in Classical Propositional Logic. By an L-model we mean an
ordered pair M = W, V), where W # (@ and V : P x W +— {1,0} is a
valuation of propositional variables in P w.r.t. elements of WW. As usual,
W is called the domain of an £-model M = (W, V), and the elements of
W are called possible worlds of the model. We put:

e V(L,w)=0 for each w € W.

The concept of truth of a wff A in a world w € W of M, in symbols
M,w = A, is defined in the standard manner. The letter p stands below
for a metalinguistic variable for propositional variables.

Definition 5.1 (Truth of a wff in a world).

1L MwE Liff V(L w) =1,

2. M,wEp if V(ip,w) =1,

3. M,w = —B iff it is not the case that M,w |= B,
M,wE (BAC) iff Mw = B and M,w = C,
M,wEBVC)iff MywkE= B or M,wkE=C,
M,wEB-—=C)iff MjwE-B or M,wl=C,
M,wEB=C)iff MyjwlE B — C and M,w |=C — B.

NS G

The inscription M = A means “A is true in an L-model M = (W, V).

Definition 5.2 (Truth in an £-model). M = A iff M,w = A for each
weW.

Elements of domains of £-models, the possible worlds, will be intu-
itively thought of here as alternative accounts of how things are. Their al-
ternativeness amounts to the effect that any two distinct possible worlds:
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w, w' in the domain of an £-model disagree on at least one wff, that is,
the wff has distinct logical values in w and in w’. This has no impact on
the formalism, however. As long as we remain at the propositional level,
the only condition imposed on W is non-emptiness. It follows that the
domain of an £-model need not contain all the relevant alternatives.

By a state we will mean a non-empty set of possible worlds. In view
of the intuitive interpretation of possible worlds adopted above, a non-
singleton state comprises a number of alternative accounts of how things
are.

Let M = (W,V) be an L-model.
Definition 5.3 (Truth set of a wff in an £-model).
Ay = {w €W : Mw = A}
Of course, | L[y = 0.

Definition 5.4 (M-state). An M -state is a non-empty subset of W.

Note that W is (also) an M-state, and that, for each w € W, the
singleton set {w} is an M-state.

5.1.2 Intuitions

Our basic intuition concerning the analysed concept of being epistemi-
cally permitted is:

(I) A declarative sentence/wff D is epistemically permitted by state S
iff it is not the case that S rules out D.

However, what “rules out” means depends on the form of D.

D can be positive, that is not of the form —& (where — stands for
sentential negation and £ is a declarative sentence/wff). It is natural to
postulate:

(IT) Let D be positive. State S rules out D iff D is false in each world
of S.
For example, “Andrew is a bachelor” is ruled out by a state which
comprises (only) possible worlds in which Andrew is married.
D can be negative that is of the form —&, where & is positive.?> We
seem justified in saying:

25 Observe that ——& is neither negative nor positive. We will come back to this
issue later on.
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(III) Let D be negative and D = —=E€. State S rules out D iff £ is true
in some world of S.

For instance, a state that contains a possible world in which Andrew
is a bachelor rules out the sentence “It is not the case that Andrew is a
bachelor.”

Assuming bivalence, by (I) and (II) we get:

(IT*) A positive, D, is epistemically permitted by state S iff D is true
in some world of S.

By (I) and (III), in turn, we get:

(I1I*) A negative, D, is epistemically permitted by state S iff D is true
in each world of S.

An analogy may be of help. A civil servant is permitted to issue a
positive decision if there is a rule that entitles him/her to do so, and
is permitted to decide to the negative if the disputed activity is forbid-
den by each rule that is applicable to the case. Similarly, a negative is
epistemically permitted by a state if there is no world of the state that
makes the negated sentence true, while for a positive being epistemically
permitted by a state amounts to the existence of a world of the state
which makes it true. Our usage of “being permitted” is thus akin to that
of its deontic cousin. Yet, we do not aim at analysing “being permit-
ted” deontically construed. Epistemic permittance is a relation between
a declarative sentence/wff on the one hand, and a state on the other.
What is (or is not) epistemically permitted is a declarative sentence/wff,
and what permits it (or does not permit) is a set of possible worlds,
where possible worlds are intuitively thought of as alternative accounts
of how things are.?6

5.2 Epistemic Permittance

5.2.1 Definition and Basic Properties

We use 3 as the sign of epistemic permittance relation. Given the
considerations presented above, we define the relation as follows:

26 Looking from a formal point of view, epistemic permittance belongs to the
same category as support analysed in Inquisitive Semantics (see, e.g., [11]). However,
the underlying intuitions are different. Moreover, Inquisitive Semantics conceives
states/sets of possible worlds as information states.
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Definition 5.5 (Epistemic permittance; e-permittance). Let M = (W, V)
be an L-model, and let S be an M -state.
1. 8% piff |ply NS #0, for any propositional variable p;
ST+ -Aiff S¥ A;
S+ (AVB) iff [(AVB)|yNS #0;
S+ (AAB) iff (AAB)|y NS #0;
S+ (A— B) iff (A= B)|ly NS #0;
S+ Liff |[LljyNnS #0.

S G o e

Observe that epistemic permittance is not defined inductively. This
is intended.

For positive wifs, being permitted by a state amounts to being true
in some world(s) of the state. To be more precise, as an immediate
consequence of Definition 5.5 we get:

Corollary 5.1. Let S be an M -state and let A be a positive wff. Then
St Aiff M,wE A for somew € S.

However, the case of negative wifs is different. By Corollary 5.1 and
clause (2) of Definition 5.5 we have:

Corollary 5.2. Let S be an M -state. Let D be a wff of any of the forms:
p, L,(BVC),(BANC),(B—C). Then S & —D iff M,w = D for each
weS.

Hence:

Corollary 5.3. Let S be an M-state and let A be a negative wff. Then
S+ Aiff M,wl= A for each w € S.

Corollary 5.3 shows that negatives behave in the context of e-permitta-
nce as it has been required in section 5.1.2.

But what about wiffs which are neither positive nor negative? As
for £, there is only one kind of such wffs, namely wffs falling under the
general schema:

=...mD (5.1)

where D is positive and the number of negations preceding D is greater
than 1. If the number is even, we say that (5.1) is a —.-wff; otherwise
(5.1) is a —,-wif. By D4 we designate the positive wif which occurs in a
—.-wif A or in a —,-wif A after the string of negations.?”

2T When A is neither positive nor negative, D4 is in the scope of the rightmost
negation of the string.
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One can prove:

Corollary 5.4. For each L-model M and each M -state S':
S+ A iff S+ A

Proof. By the clause (2) of Definition 5.5 we have:
S5 A iff S % ~A
Sk -Aiff S+ A
and hence § & ——A iff § & A. O]

Thus, taking into account corollaries 5.1, 5.2, and 5.4 we get:

Corollary 5.5.
1. Let A be a —c-wff. Then S & A iff M,w |= Dy for some w € S
iff M,wE A for somew € S.

2. Let A be a —o-wff. Then S & A iff M,w ~ D4 for each w € S iff
M,w = A for each w € S.

For brevity, let us introduce:

Definition 5.6 (p-wffs and n-wffs).
1. A p-wff is a positive wff or a —-wff.

2. A n-wff is a negative wff or a —,-wff.

As we have shown, the categories of p-wffs and n-wffs are semantically
homogeneous with regard to e-permittance. A p-wif is e-permitted by a
state iff it is true in at least one world of the state, while a n-wff is e-
permitted by a state iff it is true in each world of the state. E-permittance
could had been concisely defined in terms of p-wffs and n-wffs. However,
doing this would require an ad hoc acceptance of the claim of Corollary
5.4.

As an immediate consequence of the above corollaries we get:

Corollary 5.6. Let M = (W, V) be an L-model and {w} be a (singleton)
M -state. Then {w} ¥ A iff M,w = A.

Remark 5.1. For a singleton state e-permittance amounts to truth in
the only world of the state.
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Remark 5.2. Epistemic permittance becomes intensional when non-
singleton states enter the picture. It happens that wifs which have equal
truth sets (i.e. are classically equivalent) are not simultaneously permit-
ted by a state. For example, we have: |=(p — ¢)|; = [p A —q|nmr. Now
take an £-model and its state {wq,wa} such that:

e V(p,w1) =1 and V(q,w1) = 0,
e V(p,w2) =0 and V(q,ws) = 0.

We get:
{wi, w2} % ~(p = q)

{wi,w2} % pA—q

Remark 5.3. Note that wifs of the forms:

-A (5.2)
A— 1 (5.3)

do no differ as to their truth conditions in a world, but can differ with
respect to e-permittance by states. When A is a p-wif, (5.2) is permitted
only by a state in which A is false in each world of the state, whereas
(5.3) can be permitted by a state in which A is false only in some, but not
all worlds. This does not mean, however, that the negation connective
= has a non-classical meaning in £. Its meaning is determined by the
standard truth condition. But — behaves in a somewhat non-standard
way in the context of e-permittance.

Note also that in general e-permittance is neither downward closed
(if A is a p-wff, e-permittance of A by S need not yield e-permittance
of A by a proper subset of &) nor upward closed (a n-wff permitted by
a state need not be permitted by an extension of the state). However,
e-permittance is upward closed for p-wffs and downward closed in the
case of n-wifs.

5.3 Modalization

Let us now augment the initial language £ with the modalities O (ne-
cessity) and ¢ (possibility). Wifs of the enriched language are defined in
the standard manner. We label the new language as £. In this chapter
we use ¢,1,... as metalanguage variables for wifs of £, and &, WV, ...
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as metalanguage variables for sets of wifs of the language. Whenever
O or ¢ precedes a metalanguage expression referring to wifs of £, it is
understood that the wff in the scope of a modality belongs to £ (i.e. is
a wif of £ in which no modality occurs).

Definition 5.7 (S5-model). An S5-model is a structure:
(W, R,V)

where W # 0, V is a valuation of P w.r.t. elements of W, and R =
W X W, that is, R is universal in V.

Thus by S5-models we will mean here only these relational models in
which the accessibility relation R is universal. In the case of S5-models

we have:2®

Mw = 0O¢ iff M,w = ¢ for every w € W, (5.4)

M w = Q¢ iff M,w = ¢ for some w € W. (5.5)
The remaining truth conditions are alike these specified by Definition 5.1.
A wif A is true in an S5-model M = (W, R,V) (in symbols: M |= A)
iff M, w = A for every w € W.

It is well-known that the modal propositional logic S5 is sound and
complete w.r.t. the class of models of the above kind.

Definition 5.8 (Accompanied S5-model). Let M = (W,V) be an L-
model, S be an M -state, and R = W x W. Let Mg be an S5-model
such that:

Ms = (S, R|S,V|S)
Mg is called the S5-model accompanied with the L-model M w.r.t. the
M -state S.

Clearly, the relation R|S (that is, the restriction of the relation R
to &) is universal in S, and the valuation V|S of Mg agrees with the
valuation V of M on all worlds in S.

It is obvious that for each £-model M and each state of the model

there exists exactly one S5-model accompanied with M w.r.t. the state.
For each wif A of £ we have:

Corollary 5.7. Let M be an L-model, S be an M -state, and w € S.
Let A be a wff of L. Then M,w = A iff Ms,w E A.

The following is true as well:

28 As above, “M,w = ¢” means: “¢) is true in world w of an S5-model M.”
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Lemma 5.1. For each M-state S:
1. if Ais a p-wff of L, then: S &+ A iff Ms | OA,
2. if Ais a n-wff of L, then: S & A iff Ms | OA.

Proof. As for (1), it suffices to recall that for a p-wif A we have § & A iff
A is true in at least one world of S. By Corollary 5.5, the same holds for
—e-wifs. On the other hand, the accessibility relation in Mg is universal
in § and thus Mg | OA iff Mg, w = A for at least one w € S.

Clause (2) is an immediate consequence of Corollary 5.3, Corollary
5.5, and the fact that R|S is universal in S. O]

Let us also prove:

Lemma 5.2. Let A be a wff of L. For each M -state S:

1. St ~(A— 1) iff Mg =0A4,
2. 8% (A — 1) iff Ms = OA.

Proof. As for (1), =(A — 1) is a n-wif and hence, by Corollary 5.3,
S§% =(A— 1) iff for each w € S: M,w [~ (A — 1), that is, Ms,w =
A for any w € S, which, due to the universality of R|S in S, gives
Mg, w = OA for any w € S, that is, Mg = OA.

Concerning (2): S & (-4 — L) iff |[(-A — L)y NS # 0 iff for
some w € §: M,w = Aiff Ms,w |= ¢A for some w € S. Due to the
universality of R|S in S, the clauses: “Mg,w = QA for some w € §”
and “Mgs = OA” are equivalent. O

5.4 Knowledge in a State

As it is well-known, S5 can be interpreted as an epistemic logic, where
the box, O, represents the knowledge operator, and the diamond, O,
represents, generally speaking, epistemic possibility. This suggests a
kind of purely epistemic readings of some metalanguage expressions of
the form “S & B,” where B is a wif of L.

In this section we assume that M is an arbitrary but fixed £-model,
and that S is an M-state.

Suppose that B is of the form:

~(A—1) (5.6)
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Consider:

S% (A 1) (5.7)

Due to clause (1) of Lemma 5.2, this can be read:
A constitutes an item of knowledge in a state S
where “A constitutes an item of knowledge in a state S” means:
Ms EOA (5.8)
which, in turn, is equivalent with:
A is true in every world of state S. (5.9)

because R|S is universal in S.

Observe that, according to Lemma 5.2, (5.8) does not differentiate
between n-wils and p-wifs.

Now assume that B has the form:
—A— 1 (5.10)

Consider:
S (mA— L) (5.11)

By Lemma 5.2, (5.11) amounts to:
Ms = QA (5.12)
which, again due to the universality of R|S in S, is equivalent with:
A is true in some world of S (5.13)
Thus it seems natural to read (5.11) as follows:
A is epistemically possible in a state S (5.14)

irrespective of whether A is a p-wif or a n-wif.
For conciseness, we introduce the following abbreviations:
Definition 5.9.

1. KA =df —|(A — J_)
2. PA =df (‘!A — J_)



5.4 Knowledge in a State 83

Given what has been said above, the following definition comes with
no surprise:

Definition 5.10 (Knowledge in a state). B is known in an M -state S iff
S+ KB.

Note that knowledge in a state is defined in terms of epistemic per-
mittance. Omne can proceed analogously for the concept of epistemic
possibility in a state.

Definition 5.11 (Epistemic possibility in a state). B is epistemically pos-
sible in an M-state S iff S & PB.

Observe that for n-wifs, “being e-permittted by a state” and “being
known is a state” coincide. This does not hold, however, for p-wifs.
As for the latter, “being permitted by a state” and “being epistemically
possible in a state” concide. Yet, in the case of n-wffs “being permitted
by a state” and “being epistemically possible in the state” differ.

5.4.1 A Philosophical Comment

The standard philosophical concept of knowledge conceives it as a true
justified belief about the actual world. In the framework of an epistemic
logic supplemented with a relational semantics, “being known in a world
w of a model” is explicated by “being true in each world w* of the model
such that w* is accessible from w.” When S5 is used as an epistemic
logic, this amounts to being true in each world of the model. Since
we usually assume that the actual world is among the possible worlds
considered (or is represented by a certain possible world of a model), the
truth of OB in a model yields the truth of B in the actual world, and
1B is true in the actual world only if B is true in the world.

Knowledge in a state behaves differently. If B is known in a state S,
it is true in each world of the state and thus also in the actual world if
the actual world “is” in §. This, however, need not be the case.

Note that knowledge in a state is defined neither in terms of belief nor
justification (or any of Q-generalizations of the latter). As a consequence,
the problems faced by tripartite accounts of propositional knowledge,
described in the previous chapter, do not show up in the current setting.
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5.5 [Epistemic Permittance and Inconsistency

As above, we assume that M = (W, V) is an arbitrary but fixed £-model.
Let X be a set of wifs of £, and A be a wif of L.

The e-permittance class of A in M, in symbols: ||Al|as, comprises
all the M-states that e-permit A. The e-permittance class of X in M,
in symbols: ||X| s, is the intersection of the e-permittance classes of
elements of X in M. More formally:

Definition 5.12 (e-permittance class).

LAy ={SCW:S#0and S+ A}.
2. I X[y ={SCW:8% B for each B e X}.
Definition 5.13. X has a non-empty e-permittance class iff there exists

an L-model M such that || X||ar # 0.

When {A} has a non-empty e-permittance class, we will be saying
briefly: “A has a non-empty e-permittance class.”

One can show that some inconsistent sets of wffs have non-empty
e-permittance classes. For clarity, let us first introduce:
Definition 5.14 (Inconsistent sets and plainly inconsistent sets). A set of
wffs X of L 1s:

1. inconsistent iff (| |Bly =0 for each L-model M ;
BeX

2. plainly inconsistent iff:
(a) for some wff A, both A€ X and —A’ € X, or
(b) for some wff A € X, the singleton set {A} is inconsistent.

Clearly, e-permittance classes of plainly inconsistent sets are always
empty. However, the situation is different in the case of some sets of wifs
which are inconsistent, but not plainly inconsistent. For example, the
set {A, A — 1} is inconsistent. But the following holds:

Corollary 5.8. Let A be a p-wff of L such that ‘0A — A’ ¢ S5. Then
there exists an L-model M such that ||{A, A — L}||ar # 0.

Proof. When ‘0A — [JA’ ¢ S5, there exists a S5-model M = W, R, V)
and a world w € W such that M,w = 0A and M,w = ¢0—A. So for
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some w; € W : M,w; E A, and for some wy € W : M,ws | —-A.
Consider the following £-model M:

(w1, wa}, V{wr, wa})

As both A and (A — 1) are p-wils, it is easily seen that for the state
{wy, w2} of the model we have {w;,ws} & A and {wy, w2} & (A — L).
Hence |[{A4, (A — L)}||a # 0. O

In particular, the e-permittance class of {p,p — L} is non-empty.

Thus the following is true:

Corollary 5.9. There exist: inconsistent sets of wffs of L and L-models
such that the sets have non-empty e-permittance classes in the models.

Here is another example of an inconsistent set which has a non-empty
e-permittance class.

Example 5.13. The set {p — ¢,p, ~q} is inconsistent, but not plainly
inconsistent. Let M = (W, V) be an L£-model such that for some w;, wy €

e V(p,w) =0,
e V(q,wy) =0,
e V(p,wy) =1,
e V(q,wy) = 0.

Clearly we have:
e M,wy = p and hence {wy, w2} 3 p,
o M,w; = (p — q) and thus {wy, w2} & (p — q),
o M,w; = —q as well as M, wy = —¢; therefore {wy, w2} + —q.

Thus [[{p — ¢,p, ~q}||m # 0.

5.6 Transmission of Epistemic Permittance

5.6.1 Definition and Basic Properties

Let us now introduce the concept of transmission of epistemic permit-
tance between a set of wifs of £ and a wif of £. The symbol <, refers
to the relation in question.
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Definition 5.15 (Transmission of epistemic permittance). X <, A iff
for each L-model M and each M -state S:

if S €|lX|u, then S € || Al|y.

The intuitive content of the above concept is: if all the elements of X
are simultaneously e-permitted by a state, then A is e-permitted by the
state. This condition is supposed to hold for each £-model and each
state of the model.

Let “S & X7 abbreviate “for each Be X : S+ B.

Corollary 5.10. X <, A iff the following condition:
if S+ X, then S A (5.15)

is fulfilled by each state S of any L-model.

Transmission of permittance, <, is a consequence relation. One
can easily prove:

Corollary 5.11. <, has the following properties:
(Overlap) If A € X, then X <, A.
(Dilution) If X <, A and X CY, then Y <, A.

(Cut for sets) If X UY <, A and X <, B for every B € Y, then
X —r A.

Transmission of permittance, <., is not a structural consequence
relation, however. The following examples illustrate this:>

Example 5.14.
{~(pA—q),p} —cq (5.16)

To prove (5.16) suppose that for some state S of an £-model M it holds
that:

(1) §% =(p A —q), and
(2) S+ p.

29 For brevity, we use, here and below, object-level language expressions instead
of their metalinguistic names.
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By (2) there exists w € S, say, w1, such that M,w; = p. But since (1)
holds as well, we have M,w; = —=(p A —¢q) and hence M,w; = g. Thus
S+ q.
Example 5.15.

{=(pA==9),p} #c ~q (5.17)

To see this it suffices to consider an £-model M = ({w;, w2}, V) in which
V(p7 wl) = 17 V(Qa wl) = 07 V<p7w2) = 07 and V(q7w2) =1. We get:

L4 MJ w1 ): D

L4 MJ w1 ): _‘(p A _'_‘q))7

[ M, w2 ): —\(p /\ _|_|q))
Thus {w1, w2} + {=(pA—=—¢q),p}. On the other hand, since M, w;y £ —g,
we have {wy, w2} ¥ —gq.

Generally speaking, <, is not structural because substitution can

change the categories of wifs, that is, can turn p-wffs into n-wffs, or
n-wifs into p-wifs.30

5.6.2 Transmission of Epistemic Permittance
versus Entailment

Entailment in £, =, can be defined by:
Definition 5.16 (Entailment in £). X =, A iff for each L-model M :

() 1Blu C|Alu
BeX
Entailment in £ amounts to entailment determined by Classical Propo-
sitional Logic.
Transmission of e-permittance is a special case of entailment. By
Corollary 5.6 we get:

Corollary 5.12. If X <, A, then X =, A.

Proof. Let M be an arbitrary but fixed £-model. Assume that all the
wifs in X are simultaneously true in a world w of M. By Corollary 5.6,
it follows that {w} & X. Since, by assumption, X <, A, it follows
that {w} ¢ A. Therefore, by Corollary 5.6 again, A is true in the world
w of M. Thus X =, A. O

39 This can happen when the wff being substituted is a propositional variable or
has the form —...-p, where p is a propositional variable.
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Hence < is a truth-preserving consequence relation.
The converse of Corollary 5.12 does not hold. The following examples
illustrate this:
Example 5.16.
—pV =g Fre—(pAq) (5.18)
For, consider an £-model M = ({w;, w2}, V) such that V(p,w;) = 0,
V(p,wz) = 1, and V(q,wz) = 1. Since —p V —q is a p-wif, {w1,wa} +
—pV —q. On the other hand, —(p A q) is a n-wif and we have {w;,ws} ¥
—(p A q) because M, ws = (p A q).
Example 5.17.
{p—a.7q} #cp (5.19)
To see this it suffices to consider an £-model M = ({w;, w2}, V) in which
V(p,wi) = 0, V(q,w1) = 0, V(p,w2) = 1, and V(q,w2) = 0. Since
M,w; E (p — q), we get {w1,w2} & (p — ¢q). Clearly, {w1, w2} & —q.
But {wy, w2} % —p because V(p, w2) = 1.

5.6.3 Paraconsistency

As we have shown in section 5.5, some inconsistent sets have non-empty
permittance classes. It follows that <, is paraconsistent in the following
sense of the word: it is not the case that for every inconsistent set X
and every wif B it holds that X —, B.

Example 5.18. The set {p — ¢,p, ~q} has a non-empty e-permittance
class (see Example 5.13). Hence, in particular:

{p—=a,p,~q} Sorr (5.20)

Example 5.19. The set {p,p — L} is inconsistent, but has a non-empty
e-permittance class. One can easily show that:

{pp— L} #rq (5.21)
Observe, however, that we still have:
{p.7p} = q (5.22)

5.7 A Checking Method

How can one check whether transmission of e-permittance, <, holds
between a given set of wifs of £ and a given wif of £? In this section we
present a solution to this problem.
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5.7.1 Translation ( )*

Let us first define an operation, ( )*, which assigns to a wff of £ the
corresponding wif of £.

Definition 5.17 (Translation ( )*).
1. If A is a p-wff of L, then (A)* = QA.
2. If A is a n-wff of L, then (A)* = OA.

Note that A in OA or in [JA represents a wif of the (“non-modal”) lan-
guage L. The operation ( )* is performed on A only once; the subfor-
mulas of A remain unaffected. In other words, ( )* is a kind of “surface
translation” of wffs of £ into wffs of £.3!

For convenience, we put:
(X)" =ar {(A)": A€ X}
Let us now prove:

Lemma 5.3. If M = W, R,V) is a S5-model such that M = (X)*,
then W ¢ X.

Proof. First observe that M is the S5-model accompanied with an £-
model M = (W, V) w.r.t. the M-state W.

The elements of (X)* are either of the form QB or of the form OB,
where B € X. More precisely, if B is a p-wif, then the corresponding
element of (X)* is OB, and if B is a n-wif, OB is the corresponding
element of (X)*.

When OB € (X)* and M | OB, we get W & B by Lemma 5.1.

The case in which OB € (X)* is analogous. O

The following holds:

Theorem 5.1. X has a non-empty e-permittance class iff there exists a
S5-model M such that M = (X)*.

Proof. (=). Let M be an L-model for which || X||as # 0. Let S € || X||um-

We consider the S5-model Mg accompanied with M w.r.t. S, and we

apply Lemma 5.1.

(<). By Lemma 5.3. O
31 The idea of using translations into S5 in constructing paraconsistent logics goes

back to Jaskowski (cf. [24], and [25] for an English translation). However, Jaskowski’s

translation is defined recursively and enables an introduction of “discussive” connec-
tives. The operation ( )* behaves differently.
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Example 5.20. As we have shown (see Example 5.13), the inconsistent
set {p — ¢,p, ¢} has a non-empty e-permittance class. The following
takes place on the modal side:

M{w1,w2} ): {<>(p — Q)v Ops D_'Q} (5'23)

where My, ;) is the S5-model accompanied (w.r.t. state {wi,wa})
with the £-model considered in Example 5.13.

However, the following holds:

Corollary 5.13. If X is inconsistent and each element of X is a n-wff,
then the e-permittance class of X is empty.

Proof. Suppose that the e-permittance class of X is non-empty. Then,
by Theorem 5.1, for some S5-model M we have M = (X)*. But the
elements of (X)* are of the form [JA, where A € X. Since W is non-
empty, there exists a world w of M such that M, w = X. It follows that
X is consistent. O

The situation can be different when X contains some p-wils.

5.7.2 Transmission of Epistemic Permittance
versus Global S5-entailment

Recall that ® stands for a set of wifs of £ (i.e. the modal extension of
L), and ¢ is a metalanguage variable for wifs of £.

Let us introduce:

Definition 5.18 (Global S5-entailment). & =g5 ¢ iff for each S5-model
M: if M = &, then M |= ¢.

We will now prove:
Theorem 5.2 (Reduction modulo ( )*). X <, A iff (X)* Es5 (A)*.

Proof. Suppose that X <, A, but (X)* J£ss (A)*. Thus for some
S5-model M = W, R,V) we have M = (X)* and M [~ (A)*. But
M is accompanied with the £-model M = (W,V) w.r.t. W, that is,
M = Myy. By Lemma 5.3 we get W ¢ X and hence, due to the
transmission of e-permittance, W & A. If A is a p-wff, then, by Lemma
5.1, M = OA, that is, M = (A)*. A contradiction. Similarly, if A is a
n-wif, by Lemma 5.1 we get M |=0A, i.e. M = (A)*. A contradiction

again.
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Now suppose that (X)* Eg5 (A)*, but X <, A. Then there exists
a state S of a certain £-model M such that S & X and § ¥ A. We

consider the S5-model Mg accompanied with M w.r.t. S. By Lemma
5.1 we get Ms = (X)* and Mg = (A)*. A contradiction. O

According to Theorem 5.2, transmission of e-permittance amounts
to (global) S5-entailment among the relevant *-wffs. Thus in order to
check whether the transmission of e-permittance holds between wifs of
L, it suffices to check whether global S5-entailment takes place between
the corresponding *-wifs

Remark 5.4. Theorem 5.2 does not say that transmission of e-permitta-
nce can be identified with global S5-entailment. Recall that the *-wifs
are either of the form A or of the form QA, where A is a wif of the
non-modal language £ (and thus does not involve modal operators).

Necessity and possibility are, in a sense, expressible in £ (cf. section
5.3). But when we have ¢ [=g5 ¢ for £-wffs ¢, 1) which are of neither
of the forms: A, Q0 A, the systematic replacement in ¢ and 3 of JA
by =(A — 1) as well as of 0A by (A — 1) need not turn global
S5-entailment between ¢ and 1 into the transmission of e-permittance
between the resultant wifs of L.

Example 5.21. We have:
—0p Ess O-0p (5.24)
By the systematic replacement we get:

——(p— L) =g (—(p—L1)— 1) (5.25)

(5.25) does not hold, however. To see this let us take an £-model M* =
({w1, w2}, V) such that V(p, w;) = 0 and V(p, w2) = 1. Clearly, we have:

{wi,w2} ¥ —=(p — 1) (5.26)
since M*,wy = ——(p — L). At the same time we have:
{wi,we} ¥ =(—==(p— L) — 1) (5.27)

because M*, wy = —(—=(p — L) — 1).
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5.8 What is Retained and What is Lost
5.8.1 The Case of Single Wffs

Let us first prove:

Corollary 5.14. If B|=, A and

1. B and A are p-wffs, or
2. B and A are n-wffs, or
3. B is a n-wff and A is a p-wff,

then B <, A.

Proof. If B |=¢ A, then =, (B — A) and hence ‘00(B — A)’ € S5.

Assume that B and A are p-wffs. Suppose that OB [~g5 O A. So there
exists a S5-model M = (W, R,V) such that M | OB and M [= OA.
Hence M, w £ A for each w € W, and M, w |= B for some w € W. It
follows that for some w € W we have M,w [~ (B — A) and therefore
‘0(B — A)’¢ S5. A contradiction. Thus OB g5 ¢0A and hence, by
Theorem 5.2, B <, A.

Assume that B and A are n-wffs. Suppose that OB g5 JA. So for
some S5-model M = (W, R, V) we get: M,w = B for any w € W, and
M, w = A for some w € W. Thus ‘0(B — A)’ € S5. A contradiction.
Therefore, by Theorem 5.2, B <, A.

Finally, assume that B is a n-wif and A is a p-wff. Suppose that
OB g5 OA. Thus, for some S5-model M = (W, R, V), M,w = B for
any w € W, and M, w = A for each w € W. Hence ‘T(B — A)’¢ S5.
A contradiction again. Therefore, by Theorem 5.2, B <, A. ]

Thus, for instance, the following hold:3?

P <, oD (5.28)
——p <, p (5.29)
(p = q) = (g — —p) (5.30)
(mg = —p) = (p— q) (5.31)

32 Recall that <, is not a sentential connective, but a sign of a relation that
holds between wffs. As above, for brevity we use object-language expressions instead
of their metalinguistic names.
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p—rc (¢ —p) (5.32)
(p—a)Ap—rq (5.33)

(PVa) AN-g—rp (5.34)
(pV-9)Ng=cp (5.35)
(p—=(@—=r)=c(p—q) = (=) (5.36)
(p—=(g—=r)—=cANg—r) (5.37)
(pANqg—=1)—=e(p—(@—T)) (5.38)
(p—=(g—=7)=clg—=(p—=r)) (5.39)
(p—=a)AN(g—71) =) (5.40)
~(pAq) —=c (=pV—q) (5.41)
~(pVaq) = (-pA—q) (5.42)
“(pA—q) =z (p—q) (5.43)

=(p = q) —c (pA—q) (5.44)

Observe, however, that the converses of (5.41), (5.42), (5.43) and
(5.44) do not hold. The counterpart of Modus Tollendo Tollens does not
hold either, i.e.:

((p = @) N=q) F>c —p (5.45)

because:
O((p = @) A ~q) FEss Op (5.46)

Hence:

Corollary 5.15. There are cases in which: B is a p-wff, A is a n-wff,
B Er A, and B 4, A.

Yet, the following holds:
((p— @) A=q) = Pp (5.47)

(Recall that P—p claims that —p is epistemically possible in a state.)
This can be generalized.

Corollary 5.16. If B =, A and
1. B is a p-wff and
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2. Ais a n-wff,
then B — . PA.

Proof. If B =1 A, then ‘00(B — A)’e S5. Suppose that OB p=g5 OPA.
So for some S5-model M = WV, R,V) there exists w; € W such that
M, w; = B and, at the same time, M, w }= PA for any w € W. Recall
that PA =4 (A — L). Hence for each w € W we have M,w = A.
Therefore ‘(B — A)'¢ S5. A contradiction. O

5.8.2 The Case of Sets of Wils

The direct counterpart of Modus Ponens holds for <, (cf. 5.33). But

we have:33

{p—aptFra (5.48)

So conjunction behaves is a non-standard way in the context of < .:
Ay N ... N A, <, B need not be tantamount to {Ay,...,4,} <, B.
The reason is that a e-permittance class of a set of wifs need not be equal
with the e-permittance class of a conjunction of all the wifs in the set.3*

Yet, the following is true:

{p = ¢.Kp} —,¢q (5.49)

Recall that Kp can be read: “p is known in a state in question.”

Here are further “negative” examples:

{p,at #c (PNQ) (5.50)
{p,p — L} %c (pA-p) (5.51)
{pV—q,q} #cp (5.52)
{p—=aqq—=rtheclp—or) (5.53)

33 Since {O(p — q), Op} Fss Og. (5.33) holds because O((p — ¢) Ap) =ss Og.

4 For example, take an L-model M = ({wi,we},V) such that V(p,w:) = 0,
V(g,w1) =0, V(p,w2) =1, and V(q, w2) = 0. Clearly, {w1, w2} € ||(p — q),p||m, but
{wi, w2} € [|(p = ¢) A p|lm. In general, a conjunction of p-wifs carries information
that the conjuncts are simultaneously true in some world(s) of a state, while the
information carried by the set of conjuncts amounts to the claim that each conjunct
is true in a certain world of the state. When we have a “mixed” conjunction (that
is, involving both p-wff and n-wffs), the information carried by n-wifs “weakens”
the consecutive conjuncts, n-wfifs included, are supposed to simultaneously hold in a
certain world of a state.
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Observe, however, that the following hold:

{Kp,q} =2 (pNq) (5.54)

ity for g {Kp.Kq} =2 K(pAq) (5.55)
{pV -q,Kq} —cp (5.56)

{=(=pAq),q} —cp (5.57)

{Kp = q),K(g =)} = K(p—r) (5.58)

{=(pA=q),=(g A=)} =z =(pA-r) (5.59)

It happens that conjunction behaves in the “standard” way in the
context of <, although the conjuncts belong to diverse categories, as
in:

{p—=aq,~(gA-r)} —c(p—7) (5.60)
{=p—aq,7p} —=rq (5.61)
{pVa,—q} —cp (5.62)
{=p—q,7q} =cp (5.63)

Let us now turn to inconsistent sets. As we have shown, <, is
paraconsistent. But, for instance, we still have:

{p—=ap,~q} =c(-pVaq) (5.64)
{p—=ap,~a} =2 (=lp—q)V-p) (5.65)
{p—=ap,~q} = (=9 V- Vg (5.66)
{r.s,(r—p),(s = -p)} = (pV-p) (5.67)

{r,s,K(r = p),K(s = —p)} =, (KrvKs) (5.68)
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5.9 Final Remarks

Epistemic permittance has been defined here as a semantic relation be-
tween a wif and a set of possible worlds, where — and this is crucial
from the intuitive point of view — the possible worlds are supposed to
represent alternative accounts of how things are. In accordance with the
videly accepted terminological convention, sets of possible worlds were
called states. It should be stressed, however, that states in our sense are
not thought of as information states of an agent.

The concepts of being known in a state and being epistemically pos-
sible in a state can be defined in terms of e-permittance by a state. Their
scopes differ from that of e-permittance, and differ among themselves.
The respective concepts of knowledge and epistemic possibility are non-
standard in the sense that they are relativized to states. Moreover,
knowledge and epistemic possibility are not conceived here as proposi-
tional attitudes held (or not) by cognitive agents. Epistemic permittance
is not conceived that way either.

Our analysis was pursued on the semantic level, and the language for
which e-permittance (and related notions) were defined, was non-modal:
its syntax did not contain operators representing e-permittance, knowl-
edge and epistemic possibility. A step towards a proof-theoretic account
would require introduction of such operators and possibly a connective
by which transmission of e-permittance can be expressed.

The concept of e-permittance was used in [59] for modeling question
raising by inconsistent premises. However, its range of applicability is
not restricted to the logic of questions. It is an open question how wide
the range is.

The last remark is this. The relativization of knowledge to states
seems to resolve the old philosophical problem: one can legitimately
claim that A is an item of knowledge in some initial state and ceases
to constitute knowledge as the initial state is enriched with a new pos-
sible world/a new account of how things are in which A is not true
anymore.?> Moreover, let us consider the case of conflicting hypothe-
ses being general statements of the form Va;A. Assuming that they are
treated semantically as we have treated p-wils, conflicting hypotheses
can be simultaneously e-permitted by a state and this is not tantamount
to falling into a contradiction. A hypothesis of this kind constitutes an
item of knowledge in a state if it is true in each world of the state, and

35 More precisely, A ceases to constitute knowledge with respect to the “new” state.
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extending the state with a new world in which the claim of the hypothesis
does not hold only changes its epistemic status, but does not require the
rejection of the hypothesis: it remains an item of knowledge in the “old”
state and becomes (only) e-permitted by the “new” state. E-permitted
n-wifs, in turn, perform the role of state-constraints, since in their case
e-permittance by a state equals being true in each world of the state.
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Chapter 6

Strong Multiple-Conclusion
Entailment

6.1 Introductory Remarks

In this chapter I introduce and examine a concept of multiple-conclusion
entailment, which I dub “strong multiple-conclusion entailment.” For-
mally, strong mc-entailment is a subrelation of mc-entailment. Strong
mc-entailment is defined in a way which allows us to avoid some draw-
backs of the “standard” mc-entailment which are indicated below. More-
over, strong mc-entailment is neither left-monotone nor right-monotone.
As a by-product one gets a concept of single-conclusion entailment dubb-
ed “strong single-conclusion entailment,” which, in turn, is free of the
drawbacks pointed out below. This concept will be defined and exam-
ined in the next chapter.

6.1.1 Single-Conclusion Entailment:
Drawbacks of the Received View

The idea of transmission of truth underlies the intuitive concept of en-
tailment. According to the idea, entailment is akin to an input-output
device which, when fed with truth at the input, gives truth at the out-
put. The input need not consist of truths, but if it does, it transforms
into a true output. Similarly, if the premises are all true, any conclusion
entailed by them must be true, although the truth of premises is not a
necessary condition for entailment to hold. Or, to put it differently, the
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hypothetical truth of premises warrants the truth of an entailed conclu-
sion.?0

Logicians operate with well-formed formulas (wffs for short) of for-
malized languages and conceptualize entailment as a semantic relation
between sets of wifs and single wifs. At the same time they tend to un-
derstand the “if” above in the sense of material conditional. Yet, since
a material conditional with false antecedent is true irrespective of the
logical value of the consequent, as a consequence one gets:

(1) a set of wffs which cannot be simultaneously true, i.e. an
inconsistent set, entails every wff.

Moreover, a material conditional with true consequent is true irrespective
of the logical value of the antecedent, and hence:

(I1) a logically valid wff is entailed by any set of wffs.

Both (1) and (Il) are a kind of by-products and we got accustomed to
live with them. But (I) as well as (II) seem to contravene the intuitive
idea of transmission of truth. To say that “truth is transmitted” seems
to presuppose that it can occur at the input and that it need not occur
at the output.

Another drawback of the received view is this. To say that the hy-
pothetical truth of sentences in a set X warrants the truth of a sentence
B seems to presuppose that the hypothetical truth of all the sentences
in X contributes to the hypothetical truth of B. Entailment intuitively
construed is a kind of semantic entrenchment of an entailed sentence
in a set of sentences that entails it: a set of sentences X that entails
a sentence B comprises neither less nor more sentences than those the
hypothetical truth of which, jointly, warrants the truth of B. On the
other hand, entailment defined in the usual way, by using, inter alia, the
material “if,” is monotone:

(M) a wff B entailed by a set of wffs X is entailed by any superset of
X as well

and hence the wif B is also entailed by sets of wifs which contain elements
that are irrelevant with regard to the transmission of truth and/or the
semantic entrenchment effect(s): their hypothetical truth do not con-
tribute in any way to the truth of B.

36 The latter statement can be explicated as: “If the truth-conditions of all the
premises are met, an entailed conclusion is true as well.”
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6.1.2 Multiple-Conclusion Entailment:
Drawbacks of the Received View

The concept of entailment is sometimes generalized to the concept of
multiple-conclusion entailment (mc-entailment for short). Mc-entailment
is a semantic relation between sets of wifs, where an entailed set is al-
lowed to contain more than one element. The underlying idea is: an
mc-entailed set must contain at least one true wif if the respective mc-
entailing set consists of truths. Or, to put it differently, the hypothetical
truth of all the wifs in an mc-entailing set warrants the existence of a
true wif in the mc-entailed set

Mec-entailment can hold for trivial reasons: X mc-entails Y because
X single-conclusion entails (sc-entails for short) at least one wff in Y.
But mc-entailment can also hold non-trivially: it happens that a set
of wifs, X, mc-entails a set of wifs, Y, although X does not sc-entail
any wif in Y. For instance (taking Classical Propositional Logic as the
basis), the truth of all the wifs in the set X = {p — ¢ V r,p} warrants
the existence of a true wif in the set Y = {q,r}, but neither ¢ nor r is
sc-entailed by X or, to put it differently, the hypothetical truth of the
wifs in X guarantees that at least one of: ¢, 7, is true, but warrants
neither the truth of ¢ nor the truth of r.

The concept of mc-entailment is more general than that of sc-entail-
ment. One can always define sc-entailment as mc-entailment of a single-
ton set. However, it is not the case that mc-entailment can always be

defined in terms of sc-entailment.3”

One of the ways of thinking of entailed non-singleton sets is to con-
strue them as items effectively delimiting search spaces: a set of wifs Y
entailed by a set of wffs X is a minimal set that comprises wifs among
which a truth must lie if the wffs in X are all true. “Minimal” means
here “no proper subset of Y behaves analogously w.r.t. X.” Another way
of thinking about an entailed set is to construe it as characterizing the
relevant cases to be considered, for if X mc-entails Y and each wif in
Y sc-entails a wif B, the wif B is sc-entailed by X as well. However,
the standard concept of mc-entailment is too broad to reflect the above
ideas. This is due to the fact that mc-entailment is right-monotone.

(RM) if a set of wffs X mc-entails a set of wffs, Y, then X mc-entails
any superset of Y as well.

37 Cf. Chapter 1, section 1.1.
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Observe also that mc-entailment explicated by means of the material
“if” suffers similar drawbacks to those of sc-entailment explicated in this
way:

(I') any set of wffs is mc-entailed by an inconsistent set of wffs, and

(I') a set of wffs that contains a logically valid wff is mc-entailed by
any set of wffs.

Moreover, mc-entailment is left-monotone, that is:

(LM) a set of wffs Y which is mc-entailed by a set of wffs X is also
mc-entailed by any superset of X.

Hence there exist mc-entailing sets of wifs which contain, inter alia, wifs
that are semantically irrelevant to the corresponding mc-entailed sets.
For example, {s,p — ¢ V r,p} mc-entails {q,r}, while the hypothetical
truth of s is completely irrelevant to the occurrence of truth in {q,r}.

6.2 The Logical Basis

For simplicity, we remain at the propositional level, and we consider the
case of Classical Propositional Logic (hereafter: CPL). We assume that
CPL is expressed in a language characterized as follows.

The vocabulary of the language comprises a countably infinite set
Var of propositional variables, the connectives: —,V, A, —, and brackets.
The set Form of well-formed formulas (wffs) of the language is the small-
est set that includes Var and satisfies the following conditions: (1) if
A € Form, then ‘~A’ € Form; (2) if A, B € Form, then ‘(A® B)’ € Form,
where ® is any of the connectives: V, A, —. We adopt the usual conven-
tions concerning omitting brackets. We use A, B, C, D, with subscripts
when needed, as metalanguage variables for wifs, and X, Y, W, Z, with
or without subscripts or superscripts, as metalanguage variables for sets
of wifs. The letters p, q,r, s,t are exemplary elements of Var.

By a proper superset of a set of wifs X we mean a set of wifs Z such
that X is a proper subset of Z.

For the sake of brevity, we adopt the following notational conventions:

e we write X, Y instead of X UY,

e X, A abbreviates X U{A},
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e X4 abbreviates X \ {A}.

These conventions will be applied as long as there is no risk of a misun-
derstanding.

The inscriptions /A X and \/ Y refer to a conjunction of all the wffs in
a non-empty and finite set of wifs X and to a disjunction of all the wifs
in X, respectively. If X is a singleton set, {A}, then A X =\/ X = A.

Let 1 stand for truth and 0 for falsity. A CPL-valuation is a function
v : Form |— {1, 0} satisfying the following conditions: (a) v(—A) = 1 iff
v(A)=0; (b)v(AVB)=1iff v(A) =1lorv(B)=1; (c)v(AANB)=1
iff v(A) =1and v(B)=1; (d) v(A— B)=1iff v(A) =0or v(B) =1.
Remark that the domain of v includes Var.

For brevity, in what follows we will be omitting references to CPL.
Unless otherwise stated, the semantic relations analysed are supposed to
hold between sets of CPL-wfifs, or sets of CPL-wffs and single CPL-wffs.
By valuations we will mean CPL-valuations.

In order to make this chapter self-contained let me again introduce

the following notions (some of them were already introduced in Chapter
3).38

Definition 6.1 (Single-conclusion entailment; sc-entailment). X = A iff
for each valuation v:

o ifv(B) =1 for every B € X, then v(A) = 1.

Definition 6.2 (Multiple-conclusion entailment; mc-entailment). X |=Y
iff for each valuation v:

o if v(B) = 1 for every B € X, then v(A) = 1 for at least one
AeY.

Definition 6.3 (Consistency, inconsistency, validity, and contingence). A
set of wffs X is consistent iff there exists a valuation v such that for each
Ae X, v(A) = 1; otherwise X is inconsistent. A wff B is:

1. consistent iff the singleton set {B} is consistent,

2. inconsistent iff the singleton set {B} is inconsistent,
3. walid iff for each valuation v, v(B) =1,

4. contingent iff B is neither inconsistent nor valid.

38 Where, however, a version of CPL with the equivalence connective, =, was
considered.
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Remark 6.1. Consistent wifs construed in the above manner are often
called satisfiable wffs. The category of contingent wffs comprises wifs
which are satisfiable, but not valid.

Definition 6.4 (Logical equivalence). Wffs A and B are logically equiv-
alent iff A= B and B = A.

Sets of wifs, X and Y, are logically equivalent iff they have exactly
the same models, where a model of a set of wifs is a valuation which
makes true all the wifs in the set.

6.3 Strong Multiple-Conclusion Entailment

6.3.1 Definition and the Adequacy Issue

We use ||< as the symbol for strong mc-entailment, and we define the

relation as follows:3?

Definition 6.5 (Strong multiple-conclusion entailment; strong mc-entail-
ment). X |KY iff

1. X |FY, and
2. for each Ae X : Xoa [FY, and
3. for each BeY : X | Yop.

The consecutive clauses of the above definition express the following intu-
itions: the hypothetical truth of all the wifs in X warrants the existence
of at least one true wif in Y, yet the warranty disappears as X decreases
or Y decreases. In other words, X and Y are minimal sets under the
warranty provided by the clause (1).

Here are simple examples:

{r} = {p} (6.1)
{p.p = a} Ik {a} (6.2)
{pVva,—p}I={d} (6.3)

0= {p,—p} (6.4)

(6.5)

{p,—p} K0

39 Recall that Xo4 abbreviates X \ {A}, and similarly for Y.
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0= {pV-p} (
{=p,—q.pVa} |0 (

0= {p,q,=(rVa)} (6.8
{pVva} = {p,q} (
{pvatx{pAa,pA—q-pNAag} (6
{pAqg—r—r} R {=p,~q} (
{pA(gvr)}Ik{pAapAr} (

{pv(gvnr}til={pVvaepvr} (6.13
{=er(gnr)} I=x{-pV—q,-pV-r} (
{pvgVvr)}Ik{lpvaArpVr),qVvr} (

Note that 0 [« 0, as 0 |5 0.

Since the empty set has no proper subsets, and each proper subset
of a non-empty set is included in a maximal proper subset of the set, it
is clear that the following is true:

Corollary 6.1. X |KY iff X |FY and the following conditions hold:
1. there is no proper subset Z of X such that Z |FY,
2. there is no proper subset W of Y such that X |= W.

Due to the monotonicity of “standard” mc-entailment, ||=, we have:

Corollary 6.2. If X |<Y, then:

1. Z |HA'Y, where Z is either a proper subset or a proper superset of
X,

2. X |H W, where W is either a proper subset or a proper superset
of Y.

Thus strong mc-entailment, ||<, is neither left-monotone nor right-
monotone. The examples presented below witness this:

{p,p = qVvr}l={er} (6.16)

{pp—=qVvr,—q} |+ {q7} (6.17)
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{p,p—=qvr} | {a,rqvr} (6.18)

Observe that the following are true:*°

{p,—p} |4 {q} (6.19)

{p} I {pV -} (6.20)

As for (6.19), {¢} \ {¢} = 0, but we have {p,—p} | 0. In the case of
(6.20) we have 0 |= {pV —p}.

Thus it is neither the case that any inconsistent set of wifs strongly
mc-entails any set of wffs nor it is the case that a set which contains a
valid wif is strongly mc-entailed by any set of wifs. Hence strong mc-
entailment is free of the drawbacks (I') and (II') pointed out in section
6.1.2.

6.3.2 Strong Mc-entailment, Perfect Validity,
and Tennant’s Entailments

Corollary 6.1 yields that our concept of strong mc-entailment is akin to
(but not identical with) the concept of perfectly valid sequent introduced
by Neil Tennant in [48], p. 185.

Assume for a moment that sequents are simply pairs of sets of wifs.
A proper subsequent of a sequent X : Y is a sequent resulting from it
by removing at least one wif from X or from Y. Tennant’s definition of
validity of a sequent X : Y amounts to the presence of mc-entailment of
Y from X. A sequent X :Y is perfectly valid iff X : Y is valid and no
proper subsequent of X : Y is valid. Thus, by Corollary 6.1, a sequent
X 1Y is perfectly valid iff X ||< Y holds.*!

However, perfect validity performs an auxiliary role in [48]. The
central concept is that of sequent being an entailment. A sequent X : Y
is an entailment just in case X : Y has a perfectly valid suprasequent.
A sequent Z : W is a suprasequent of the sequent X : Y iff for some

40 As for (6.19), {q} \ {¢} = 0, but we have {p, —p} |= 0. In the case of (6.20) we
have ( |= {p VvV —p}.

4l But if the concept of proper subsequent is to be understood differently (i.e.
X' :Y' is a proper subsequent of X : Y just in case X’ & X or Y’ & Y, one needs
the condition:

X'uY' CcXuy

in order to pass from perfect validity to strong mc-entailment. Tennant does not
provide an explicit definition of the notion of proper subsequent used.
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substitution s, s(Z) = X and s(W) = Y. Tennant builds a sequent
calculus which is sound and complete w.r.t. entailments construed in the
above manner. A proof-theoretic account of perfectly valid sequents is
also given by means of the so-called perfect proofs.

In this chapter we concentrate upon a semantic analysis of strong mc-
entailment or, if you prefer, perfect validity. A proof-theoretic account of
strong mc-entailment, different from that offered by Tennant for perfect
validity, will be also provided in Chapter 10.

6.4 Basic Properties of Strong Mc-entailment

Let us first note:

Corollary 6.3. Let A, B be logically equivalent wffs.

1. IfAe X and X |RY, then XoaU{B} |RY.
2. IfA€Y and X |RY, then X |K Yoa U{B}.

Thus logically equivalent wifs are replaceable in the context of strong
mc-entailment. Needless to say, replaceability may fail for logical equiv-
alence of sets of wifs. This is not surprising, as strong mc-entailment is
a “hybrid” notion, defined in terms of semantic as well as set-theoretic

clauses.*?

Corollary 6.4. {A} |< {A} iff A is contingent.

Proof. Clearly, {A} |~ {A}, and {A}c4 = 0. On the other hand, A is
not valid iff ) |~ {A}, and A is not inconsistent iff {A} |~ 0. O

However, the overlap/reflexivity condition is not satisfied in the case
of non-singleton sets.

Corollary 6.5. If X has at least two elements, then X |+ X.

Proof. Suppose otherwise. It follows that Xo4 |£ X, where A € X.
But, as X has at least two elements, it holds that Xo4 N X # () and
hence X4 |E= X. A contradiction. O

Let us now prove

Corollary 6.6. If X |<KY and X is inconsistent, then Y = ().

42 Such a solution has obvious vices, but also some virtues; see sections 7.2.3 and
8.1 below.
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Proof. Let X |K Y. Thus X |= Y. Assume that X is inconsistent.
Suppose that Y # (). Thus @ is a proper subset of Y. However, X |= ()
(since X is inconsistent) and hence X |« Y due to Corollary 6.1. So
Y = 0. O

Thus an inconsistent set strongly mc-entails, if any, only the empty
set. If any, since there are inconsistent sets that do not strongly mc-entail
even the empty set. For instance, the set {p A =p,p} does not strongly
entail the empty set because we still have {p A —p} |E= 0. As we will see,
only minimally inconsistent sets strongly mc-entail the empty set.

Remark 6.2. There exist strongly mc-entailed inconsistent sets of wifs.
Examples (5.26) and (6.8) presented above support this claim. Here are
examples which do not involve the empty set:

{r} Ik {pAg,pA—q} (6.21)

{=(pA@),pVa} Ik {pA—q,—pAdg} (6.22)

6.4.1 Contingent, Valid, and Inconsistent Wffs

Interestingly enough, strong mc-entailment between non-empty sets of
wifs involves sets which comprise contingent wifs only. The following
holds:

Theorem 6.1 (Contingency). Let X |KY. If X # 0 and Y # 0, then
each wff in X UY 1is contingent.

Proof. Assume that X ||<Y, where X and Y are non-empty sets.

Suppose that X contains a valid wif, say, A. It follows that X4 =Y
and therefore X |« Y. Now suppose that X contains an inconsistent
wif. Hence X is an inconsistent set. But Y # (). Thus, by Corollary
6.6, X |+ Y, which contradicts the assumption. Therefore X contains
contingent wifs only.

Suppose that a valid wff, say, A, belongs to Y. By assumption,
X # (), so 0 is a proper subset of X. Suppose that Y = {A}. Clearly,
0 |= {A} due to the validity of A. Hence X |« {A}. Now suppose that
Y # {A}. AsY # 0, it follows that {A} is a proper subset of Y which,
however, is mc-entailed by X since A is valid. Thus X |« Y. Therefore
no valid wff belongs to Y.

Finally, suppose that an inconsistent wif, B, belongs to Y. In this
case X | Y yields X |= Yop. As Y is, by assumption, non-empty,
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Yop is a proper subset of Y. It follows that X |« Y. We arrive at a
contradiction. Thus no wif in Y is inconsistent. Therefore X UY contains
contingent wifs only. O

What if either X or Y is empty? The answer is provided by:

Corollary 6.7.

1. If O |RY, then either Y is a singleton set containing a valid wff,
or'Y is a non-singleton set comprising only contingent wffs.

2. If X ||k 0, then either X is a singleton set containing an incon-
sistent wff, or X is a non-singleton set comprising only contingent

wffs.

Proof. If ) |K Y, then Y # (). Assume that Y is a singleton set, {C}.
Since () |< {C} presupposes 0 |= {C}, it follows that C is a valid wif.
Assume that Y is a non-singleton set. Suppose that Y contains a non-
contingent wif, say, B. If B is valid, then @) |= {B} and hence 0 |« Y.
The situation is analogous when B is an inconsistent wif; in this case we
would have 0 |= Yo p.

If X |< 0, then X # (. Assume that X is a singleton set, {C'}.
Thus {C} |~ 0 and hence C' is an inconsistent wff. Assume that X is
a non-singleton set. Suppose that X contains a non-contingent wiff, say,
A. Clearly, X4 is a proper subset of X and so is {A}. Assume that A
is valid. Thus X¢4 |F 0 and hence X ||< () does not hold. Now assume
that A is inconsistent. Thus {A} |= () and hence, again, X ||< 0 is not
the case. Therefore each wif in X is contingent provided that X is a
non-singleton set. O

As for strong mc-entailment, non-contingent wifs come into play in
two exceptional situations only.

Theorem 6.2. Let X | Y.
1. If C is valid, then: C € X UY iff X =0 and Y = {C}.
2. If C is inconsistent, then: C € X UY iff X ={C} and Y = 0.

Proof. Let C be a valid wff. Assume that X |[KY and C € X UY.

Suppose that C' € X. Hence X # () and X-¢ is a proper subset of
X. If C is valid, then whatever is mc-entailed by X is also mc-entailed
by Xoco. So X |4 Y. We arrive at a contradiction. Therefore C' ¢ X
and thus C' €Y.
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Suppose that X # (. Thus () is a proper subset of X. Since C' is
valid and C € Y, we have () |= Y. It follows that X ||< Y, contrary to
the assumption. Therefore X = (). As C €Y, it follows that Y does not
comprise contingent wifs only. Hence Y = {C} due to Corollary 6.7.

Needless to say, if Y = {C'}, then C € X UY.

The proof of (2) goes along similar lines. O

According to Theorem 6.2, valid wffs can occur as elements of strongly
mec-entailed sets, but these sets are always singleton sets which, moreover,
are strongly mc-entailed only by the empty set. Similarly, if an inconsis-
tent wif belongs to a strongly mc-entailing set, it is the only element of
this set and the respective strongly mc-entailed set is empty. Moreover,
valid wifs never occur in strongly mc-entailing sets, and inconsistent wifs
never occur in strongly mc-entailed sets.

6.4.2 Strict Finiteness and Variable Sharing

We are dealing here with CPL, in which mc-entailment has the following
properties:

(If) If X | Y, then X1 |F Y for some finite subset X1 of X.
(rf) If X | Y, then X |E= Y1 for some finite subset Y1 of Y.

As for CPL (and other logics in which mc-entailment fulfils the above
conditions), strong mec-entailment is strictly finitistic in the sense ex-
plained by:

Theorem 6.3 (Strict finiteness). If X |<KY, then X and Y are finite
sets.

Proof. Let X ||K Y. Suppose that X is an infinite set. By Corollary 6.1,
it follows that there is no finite subset of X which mc-entails Y. Hence
X Y due to condition (If). But X |K Y yields X [EFY. So X is a
finite set. Now suppose that Y is an infinite set. Hence, by Corollary 6.1,
no finite subset of Y is mc-entailed by X. Thus X |#Y due to condition
(rf). It follows that X |< Y does not hold, contrary to the assumption.
So Y is a finite set as well. O

Our next theorem is strongly dependent on the fact that we consider
here propositional formulas.
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Notation. By Var(A) we designate the set of all the propositional vari-
ables that occur in a wif A. Var(X) designates the set of all the propo-
sitional variables that occur in the wiffs which belong to a set of wifs

X.

Theorem 6.4 (Variable sharing). Let X |K Y. If X and Y are non-
empty sets, then Var(X) NVar(Y) # 0.

Proof. Let X |KY, where X # () and Y # 0.

If X # (), then, by Corollary 6.2, ) |= Y. By assumption, Y # 0.
So there exists a valuation, say, v*, such that v*(B) = 0 for any B € Y.
By Corollary 6.6, X is consistent. Hence there exists a valuation v such
that v(A) =1 for every A € X.

Suppose that Var(X)NVar(Y) = (). Let v be a valuation such that:
(a) vt (p;) = v*(pi) if p; € Var(Y), (b) otherwise v*(p;) = v(p;). As
Var(X) NVar(Y) = 0, we have v*(A) = 1 for every A € X. On the
other hand, v*(B) = 0 for each B € Y. Hence X |£ Y and therefore
X |H Y. We arrive at a contradiction. O

So when strong mc-entailment between X and Y holds, the wifs in
X share propositional variable(s) with the wifs in Y. However, Theorem
6.4 cannot be strengthened to the effect that Var(Y) C Var(X) would
be the case. Similarly, Var(X) C Var(Y) does not generally hold.*3

6.5 Partial Reduction to Minimally Inconsistent
Sets

As long as a logic operating with the classical negation is concerned,
there exist simple links between strong mc-entailment and minimally
inconsistent sets: 44

Definition 6.6 (Minimally inconsistent set; Ml-set). A set of wffs X is
minimally inconsistent iff X is inconsistent, but each proper subset of X
15 consistent.

43 For instance, we have {pV ¢} |< {p,r — ¢} as well as {p A q} |< {p}.

44 The concept of minimally inconsistent set has found natural applications is many
areas, from philosophy of science (cf., e.g., [26]) to theoretical computer science, Al,
and logic (see, e.g., [32], [6], [37]). Minimally inconsistent sets are also called minimal
unsatisfiable (sub)sets or unsatisfiable cores.
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For brevity, we will be referring to minimally inconsistent sets as to
Ml-sets.

Note that ) is not a Ml-set. Singleton Ml-sets have inconsistent wiffs
as the (only) elements. Here are examples of non-singleton Ml-sets:

{p, -} (6.23)
{pVaq,—p,~q} (6.24)

{p = a,p,~q} (6.25)
{p—qVr,p,—q -} (6.26)
{p—aq—r-(p—nr)} (6.27)

Clearly, the following holds:

Corollary 6.8. X is a Ml-set iff X is inconsistent and for each A € X,
the set X4 is consistent.

Remark 6.3. As for CPL, any Ml-set is finite. This is due to the fact
that the following compactness claim holds for CPL:

(&) for each set of wffs Z: the set Z is consistent iff each finite subset
of Z is consistent.

However, there are logics for which the analogues of (&) do not hold and
thus finiteness is not a property of Ml-sets in general.

Notation. For brevity, we put:
Y =df {—|A A€ Y}

In the case of CPL, strong mc-entailment and Ml-sets are linked in
the following way:

Theorem 6.5 (Partial reduction to Ml-sets for |<). X | Y iff
XN=Y =0 and X,-Y is a Ml-set.

45 For example, in a logic that validates the w-rule, a set of the form
{3zPz} U {-Pa:a € T}

where P is a predicate and T is a (countably infinite) set of all closed terms of the
language, is an infinite Ml-set.



6.5 Partial Reduction to Minimally Inconsistent Sets 115

Proof. (=) Let X |< Y. Suppose that X N =Y # (. Let A € X N =Y.
Thus A = =B for some B € Y. Let Y* = Yop. From X |K Y we
get X |E Y™, B. Therefore X,—-B |= Y*, that is, X, A | Y*. But
X,A =X, since A € X. Hence X mc-entails the proper subset Y* of
Y. It follows that X |« Y. We arrive at a contradiction. Therefore
XNy =0.

If X <Y, then X |=Y and thus the set X, Y is inconsistent. Let
us designate the set X, —Y by Z.

IfAeZ then Ae X or Ae Y.

Assume that A € X. By the clause 2 of Definition 6.5, X4 | Y
and thus the set X4, Y is consistent, that is, Z54 is consistent.

Now assume that A € =Y. Hence A = =B for some B € Y. By
the clause 3 of Definition 6.5, X |# Yop. Thus the set X, =(Yop) is
consistent. Yet, X, ~(Y5p) = Zo4. Hence the set Z- 4 is consistent.

By Corollary 6.8, X, =Y is thus a Ml-set.

(<) Assume that X N =Y = () and X, Y is a Ml-set. From the latter it
follows that X |F Y.

Again, let Z = X, Y.

Suppose that Xo4 |F Y for some A € X. Then the set X4, Y is
inconsistent. Yet, since X N—Y = (), the set X4, Y is a proper subset
of Z. Thus Z is not a Ml-set. A contradiction.

Now suppose that X |= Yop for some B € Y. Let us designate
Yop by Y*. As X | Y™ holds, the set X, =Y™ is inconsistent. But
X N=Y = (), so =B does not belong to X. Hence the set X,-Y* is a
proper subset of Z. Thus Z is not a Ml-set. A contradiction again.

Therefore X < Y. O

Theorem 6.5 yields:

Corollary 6.9.
1. X |0 4ff X is a Ml-set.
2. 0|RY iff =Y is a Ml-set.

Remark 6.4. As the second part of the proof of Theorem 6.5 shows, one
can get X |<K Y from the fact that X,—Y is a Ml-set on the condition
that X N =Y = () holds. This condition is a necessary one. For example,
let X ={pVq,—p,~q}and Y = {p,q}. Then =Y = {-p, -q} and hence
X,-Y = X. As X is a Ml-set, so is X,-Y. However, X |4 Y, since
{pV q} |E {p,q}. On the other hand, X N Y = {-p, ~q} # 0.
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There exist Ml-sets which do not contain wifs beginning with nega-
tion, i.e. wifs of the form —B. Here are simple examples:

{p—=a.pA—q}

{p,p = q.p = ¢}

It may seem that such MI are “useless” in showing that strong mc-
entailment holds. But this is wrong. The corollary below explains why.

Corollary 6.10. If X,Y is a Ml-set and X NY =), then X |K =Y.

Proof. Clearly, if X,Y is a Ml-set, then X, —(=Y") is a Ml-set. Suppose
that XN—(=Y) # 0. So there exists A € X such that A = =—B for some
BeY,and A€ ~(-Y). As X,Y is a Ml-set and X NY = (), we have
B ¢ X and thus the set X,Yyp is consistent. Hence X, (—(=Y))c--n
is a consistent set as well. But X, (=(=Y))s-—p = X,(-Y), since
A = —--B and A € X. It follows that X, —(=Y") is not a Ml-set. We
arrive at a contradiction. Thus XN—(=Y) = 0. As X, =(=Y) is a Ml-set,
by Theorem 6.5 we get X |< =Y. O

6.6 Independence and Deduction

Observe that if X strongly mc-entails Y, then neither X nor Y contains
syntactically distinct wifs which are logically equivalent, i.e. entail each
other. The reason is that a Ml-set never includes logically equivalent
wifs. We can also prove more:

Theorem 6.6 (Independence). Let X | Y, and let A, B be syntactically
distinct wffs.

1. IfA,Be X andY # (), then A= B and A = -B.
2. IfA,B €Y, then A~ B, and ~A [~ B provided that {A, B} #Y .

Proof. If X ||< Y, then, by Theorem 6.5, X, =Y is a Ml-set and XN—Y =
0.

Let A,B € X. Thus the set Xop,Y is consistent and, due to
the fact that X,—Y is inconsistent, Xop,~Y | —-B. But A € Xgp.
Therefore Xop, Y | A. Hence A |~ B.

As B € X, we have X = B. Suppose that A = —B. Since A € X, it
follows that X = —B. Thus X is an inconsistent set and, as Y # (), we
get X |H Y.
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Let A,B € Y. It follows that ~A,—~B € =Y. By Theorem 6.5,
X,-Y is a Ml-set and hence an inconsistent set. Thus X,~(Y54)
A. However, the set X,—(Y54), as a proper subset of the Ml-set in
question, is consistent. On the other hand, ‘=B’ € =(Yz4). It follows
that X, —(Y54) = —~B. Therefore A [~ B.

Assume that {A, B} # Y. Suppose that =A |= B. It follows that §) =
—A — B and hence () |- {A,B}. As {A,B}#Y,weget X|<Y. O

Notation. For conciseness, let us introduce the following notational
convention:

{~A} if W=0,

(A=Wl =4 { {ASB:BeW} if W0,

One can easily show that the following holds:
Corollary 6.11. Z, A=W iff Z |= A — W].
As a consequence we get:

Theorem 6.7 (Deduction for strong mc-entailment). Let A ¢ X.
If X, A|<Y, then X |< [A—>Y].

Proof. Assume that X, A |k Y. If X,A |= Y, then, by Corollary
6.11, X |= [A — Y]|. Let B € X. Since, by assumption, A ¢ X,
it follows that A # B. Thus Xop, A is a proper subset of X, A. As
X, A |KY holds, we have Xop, A £ Y. Hence, by Corollary 6.11 again,
Xop |E[A—=Y]. Let C €Y. Thus X, A |~ Yoc. Therefore, by Corol-
lary 6.11, X |F£[A — Yo¢]. Hence X |K [A — Y. O

Note that the converse of Theorem 6.7 is not true. For example,
0 |< {p — q,p — —q} holds, but {p} | {q, —q} is not the case. However,
the following is true:

Corollary 6.12. If X | [A = Y] and X = —A as well as X |FY,
then X, A |KY.

Proof. Suppose that Y = (). Hence X |< {—=A}. Thus X = —A. But,
by assumption, X = —A. So Y # ().

If X |< [A — Y7, then, by Definition 6.5 and Corollary 6.11, X, A |=
Y and Xop U{A} | Y for any B € X. By assumption, X |£Y. It
follows that for every C € X, A we have X, A\ {C} |~ Y. Now suppose
that X, A |= Yop is the case for some D € Y. There are two possibilities:
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(a) Yop = 0 and (b) Yop # (0. Assume that (a) holds. It follows that
the set X, A is inconsistent. But, by assumption, X [~ —A and hence
the set X, A is consistent. So (a) does not hold. It follows that Y is not
a singleton set. Assume that (b) is the case. Therefore, by Corollary
6.11, X |=[A — Yop|. As [A — Yop] is a proper subset of [A — Y,
it follows that X |« [A — Y'|. So we arrive at a contradiction again.
Hence X, A |# Yop for every D € Y. As all the clauses of Definition 6.5
are fulfilled w.r.t. X, A and Y, we conclude that X, A |K Y holds. [

As the proof of Corollary 6.12 shows, the assumption “X [ —A” is
dispensable when Y is neither a singleton set nor the empty set.

Corollary 6.13. Let Y be a finite and at least two-element set of wffs.
IFX|RK[A=Y]| and X |EY, then X, A |K Y.

Finally, observe that ||< is not closed under uniform substitution. A
simple example illustrates this. Clearly, {p} |< {p} is the case. But
{p A =p} |K {p A —p} does not hold (cf. Corollary 6.6). Needless to say,
p A —p results from p by substitution.



Chapter 7

Strong Single-Conclusion
Entailment

7.1 Definition and the Adequacy Issue

Sc-entailment traditionally construed can be identified with mc-entailment
of a singleton set. Similarly, it seems natural to define strong sc-entailment
as strong mc-entailment of a singleton set.

We use K as the symbol for strong sc-entailment.
Definition 7.1 (Strong single-conclusion entailment; strong sc-entailment).
X KB iff X |<{B}.

For brevity, we will write A K B instead of {A} K B.

As an immediate consequence of Definition 7.1 and Theorem 6.5 one

gets:

Theorem 7.1 (Partial reduction to Ml-sets for K). X K B iff “B’¢ X
and X,—B is a Ml-set.

Note that the transition from right to left requires ‘=B’ ¢ X to hold.
For example, although

{p,p = —~q,~~q} U {-—q} (7.1)

is a Ml-set, {p,p — —¢, 7—q} K —¢ does not hold, since ‘=—¢’ € {p,p —
The following is true:
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Corollary 7.1. X K B iff
1. X =B and
2. for each proper subset Z of X: Z W~ B, and

3. X 1is consistent.

Proof. Clearly, X = B holds iff X ||= {B} is the case.

Clause (2) holds due to Corollary 6.1. On the other hand, clause (2)
yields that there is no A € X such that X¢4 |= {B}.

Since {B} \ {B} = 0, clause (&) of Definition 6.5 and clause (3) of
the above corollary are equivalent for Y = {B}. O

Strong sc-entailment is not monotone. As a matter of fact, it is
“antimonotone” in a sense explained by:

Corollary 7.2. If X K B and X CY, where Y # X, then Y |K B.

Proof. By Definition 7.1 and Corollary 6.2. O

As we pointed out in section 6.1.1, the monotonicity of entailment con-
travenes, in a sense, the semantic entrenchment idea, since it allows
semantically irrelevant wffs to occur among premises. In the case of
strong sc-entailment, however, the difficulty is solved in a radical way: a
strongly sc-entailing set is “minimal” with regard to the transmission of
truth and, since no proper superset of a set X that strongly sc-entails
a wif B strongly sc-entails B as well, adding an “irrelevant” wif to X
results in the lack of strong sc-entailment of B from X enriched in this
way.

By the clause (2) of Corollary 7.1, each proper subset of a strongly sc-
entailing set is consistent. Strong sc- and mc-entailment do not differ in
this respect. As we have seen, however, there exist strongly mc-entailing
sets which are inconsistent (each of them strongly mc-entails only the
empty set, however). According to the clause (&) of Corollary 7.1, this
never happens in the case of strong sc-entailment. Anyway, strong sc-
entailment is free of the drawback (I) pointed out in section 6.1.1. Let us
add: free, again, in a radical way, since inconsistent sets do not strongly
sc-entail any wifs. As an immediate consequence of Corollary 6.6 one
gets:

Corollary 7.3. No wff is strongly sc-entailed by an inconsistent set of

wffs.
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Thus no inconsistent wif belongs to a sc-entailing set, and a singleton set
which comprises an inconsistent wif does not strongly sc-entail any wif.
In particular, neither A A=A A nor {A,—A} K A holds, regardless of
what A is. Similarly, there is no B such that AA—ARK Bor {A4,-A} K B.

Observe that the following holds as well:

Corollary 7.4. There is no set of wffs that strongly sc-entails an incon-
sistent wif.

Proof. By Definition 7.1 and Theorem 6.2. O

Thus inconsistencies are outside the realm of strong sc-entailment: no
inconsistent set belongs to the domain of K and no inconsistent wif
belongs to the range of the relation. No doubt, a paraconsistent logician
will dislike strong sc-entailment.

The case of validities is slightly more complicated. By Theorem 6.2
we get:

Corollary 7.5. If X K B, then no wff in X is valid.
Corollary 7.6. If B is valid and X K B, then X = {).

One can prove that valid wifs are exactly these wifs which are strongly
sc-entailed only by the empty set.

Corollary 7.7. A wff B is valid iff 0K B and X K B for any X # (.

Proof. Let B be a valid wff. Thus {—-B} is a Ml-set, and hence, by
Corollary 6.9, @< B. Thus X |k B for any X # (). On the other hand,
if K B, then () = B and hence B is valid. O

As for valid wffs, Corollary 7.6 yields that the difference between
strong sc-entailment and sc-entailment simpliciter lies in the fact that
valid wifs are strongly sc-entailed only by the empty set. Thus, in par-
ticular, valid wifs are not strongly sc-entailed by sets of valid wifs. More-
over, a valid wff is not sc-entailed by any set of wifs to which a valid wff
belongs to.

7.2 Some Properties of Strong Sc-entailment

Since strong sc-entailment is defined in terms of strong mc-entailment,
one can easily derive the following corollaries from the corresponding
results presented in sections 6.4.1, 6.4.2, and 6.6.
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Corollary 7.8. Let A, B be logically equivalent wffs.

1. If Ae X and X K C, then XoaU{B} K C.

2. If XK A, then X K B.
Corollary 7.9 (Contingency for K). If X |k B and X # 0, then each
wff in X U{B} is contingent.
Corollary 7.10 (Strict finiteness of K). If X |K B, then X is a finite
set.
Corollary 7.11 (Variable sharing for K). If X KB and X # 0, then
Var(X) NVar(B) # 0.
Corollary 7.12 (Independence for K). Let X K B. If A,C are syntacti-
cally distinct wffs that belong to X, then A = C and A [~ —C.

Corollary 7.13 (Deduction for |K). Let A ¢ X. If X,A KB, then
XKA— B.

The converse of Corollary 7.13 is not true. For instance, ) K pA—p —
g holds, but p A =p K¢ does not hold. Yet, there are cases in which
X KA — Byields X, AK B. Corollary 6.12 implies:
Corollary 7.14. If X KA — B, and X = —A as well as X [~ B, then
X,AKB.

Thus we get:

Corollary 7.15. Let A ¢ X, and X [~ —A as well as X [~ B. Then
X, AR Biff Xk A— B.

Proof. By corollaries 7.13 and 7.14. O

Strong sc-entailment is, in a sense, closed under detachment.

Corollary 7.16 (Detachment for |<). If X KA — B and X K A, then
XKB.
Proof. Either X K A — A or X K B warrants the consistency of X,
and together they yield that X &= B holds.

Assume that X # ). Let C be an arbitrary but fixed element of
X. From X KA — B we get Xoc £ A — B. It follows that Xo¢ [~ B.

Thus X K B.
Now assume that X = (0. In this case B is a valid wff. Therefore
() k B due to Corollary 7.7, that is, X K B. O

Observe that one can also prove that X KA — B and X = A yield
XKB.
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7.2.1 Strong Sc-entailment from Singleton Sets

Strong sc-entailment from single wifs (more precisely, from singleton
sets of wffs) has some properties which strong sc-entailment from non-
singleton sets lack.

Corollary 7.17. The following are equivalent:
1. AKB,
2. AE B and A, B are contingent wffs.

Proof. The implication from (1) to (2) is due to Definition 7.1 and Corol-
lary 7.9. As for the passage from (2) to (1), it suffices to observe that the

contingency of A warrants the consistency of { A}, while the contingency
of B guarantees that () |= {B} does not hold. O

One cannot generalize Corollary 7.17 to non-singleton sets. The con-
tingency of all the wifs belonging to a (non-empty) non-singleton set
of wffs X warrants neither the consistency of X itself nor the lack of
entailment of B from proper subset(s) of X.

Coming back to sc-entailment from single wffs. The lack of strong sc-
entailment in the presence of standard sc-entailment tells us more about
the wifs involved than Corollary 7.17 does.

Corollary 7.18. If A = B, but A |K B, then A is inconsistent or B is

valid.

Proof. If A= B and A |K B, then {A} is an inconsistent set or } |= B.
So A is inconsistent or B is valid. O

When X is a non-empty set having more that one element, the lack
of X K B in the presence of X = B implies that X is inconsistent or B
is entailed by some proper subset of X.

Finally, let us notice the following:
Corollary 7.19. If AK B and B C, then AK C.

Proof. Certainly, A = B and B = C yields A = C. By Corollary
7.17, A K B warrants the contingency of A, while B K C' yields the
contingency of C. So A K C due to Corollary 7.17. O

Observe that when X has more than one element, the passage from
X KB and B K C to X K C requires an additional condition to be met,
namely it must be ensured that for each D € X, the set Xop does not
entail C.
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7.2.2 Mutuality

As for CPL, mc-entailment of a non-empty finite set reduces to sc-
entailment of a disjunction of all the elements of the set, i.e. if Y is
a finite set and Y # (), then X |= Y iff X = /Y. But strong mc-
entailment and strong sc-entailment are not linked in this way. For
instance, we have:

pRpPVa (7.2)

but we do not have:*6

pl=A{p,q} (7.3)

Strong mc- and sc-entailments are mutually linked in a quite different
way, as the following theorem shows.

Theorem 7.2 (Mutuality).
1. If X |RY,B, where B¢Y, then X,-Y K B.
2. IfX,~Y K B and X N =Y =0, then X |K Y, B.

Proof. (=). If X |KY, B, then, by Theorem 6.5, X U (=Y U{=B}) is a
Ml-set and X N (=Y U {-B}) = 0. It follows that (X U-Y)U {—-B} is
a Ml-set and ‘-B’ ¢ X. By assumption, B ¢ Y. So ‘=B’ ¢ =Y. Hence
‘=B’ ¢ X,-Y. Thus X,-Y K B by Theorem 7.1.

(«<). If X,-Y K B, then, by Theorem 7.1, (X U-Y) U {-B} is a MI-
set and ‘-B’ ¢ X U-Y. Suppose that X N (=Y U {=B}) # 0. As
‘—“B’ ¢ X U-Y, it follows that (X N —Y) # (). On the other hand, by
assumption (X N =Y) = 0. Thus X N (=Y U {=B}) = (. Therefore
X |KY, B due to Theorem 6.5. O

7.2.3 Conjunction versus Set of Conjuncts

As for the standard sc-entailment based on Classical Logic, there is no
scope difference between being entailed by a finite set of wifs and being
entailed by a conjunction of all the wffs of this set. Although conjunction,
A, is semantically construed here in the classical manner (cf. section 6.2),
it is worth to note that strong sc-entailment from a conjunction of wifs
and strong sc-entailment from a set of all its conjuncts only overlap, but
not coincide. Clearly, the following is true:

Corollary 7.20. Let X # 0. If X K B, then AX K B.

Wdoes not hold because {p} |E= ({p,q} \ {¢})-
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For example, {p, ¢} KpAq is the case and thus pAq K pAq holds as well.
Yet, the converse of Corollary 7.20 is not true. For instance, p A ¢ Kp
holds, while {p,q} < p does not hold.*” At first sight this looks unten-
able. However, the phenomenon can be explained as follows. Information
carried by AX K B and X K B differ when X is not a singleton set. In
both cases transmission of truth as well as consistency of the set X are
ensured. The claim of A\ X KB is: although B need not be true, the
(hypothetical) truth of all the wffs in X is sufficient for B be true. Note
that A\ X K B does not exclude that the transmission of truth effect takes
place w.r.t. some proper subset or some proper superset of X. (As for
p A g p, there is a proper subset of {p, ¢}, namely {p}, which ensures
the transmission.) The claim of X K B is stronger: this is just the (hy-
pothetical) truth of all the wifs in X that warrants the (hypothetical)
truth of B. “Just” means here: “one needs neither more nor less than
the truth of all the wifs in X for B be true.”

Observe that one can pass from AX K B to X K B on the condition:
(V) for each A e X : N(Xoa) =B
which, however, does not hold universally.

Remark 7.1. Although strong sc-entailment is “antimonotone” (cf. Coro-
llary 7.2), the following fact is worth some attention:

Corollary 7.21. Let X # 0. If XK B and Y is a consistent proper
superset of X, then \Y K B.

Proof. By Corollary 7.6, if X # () and X K B, then B is not valid. So
() £ B. On the other hand, () is the only proper subset of { \ Y'}. Clearly,
if X = B, then Y = B and hence {A\Y} | B. If Y is consistent, so is
{A\Y}. Therefore A\Y K B. O

Thus a wif strongly sc-entailed by a non-empty set of wifs X is also
strongly sc-entailed by (the singleton set comprising) a conjunction of
all the wifs of a consistent extension Y of X. Note, however, that,
according to what has been said above, A\ Y |K B carries less information
than X K B. Moreover, X K B suppresses Y K B.

4T By the way, these examples provide a nice illustration of the lack of transitivity
of strong sc-entailment.
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7.2.4 Transposition and Abduction

Let us end this chapter by pointing out some interesting property of
strong sc-entailment.

Theorem 7.3. Let A¢ X and —~B’ ¢ X.
1. If X,A KB, then X,-B K —A.
2. If X,~B KA, then X,A K B.

Proof. Assume that X, A K B. Thus X, A = B and hence X, -B = —A.

Suppose that X, —B is an inconsistent set. It follows that X = B
holds and therefore X, A |k B. Thus the set X, —B is consistent.

Now suppose that (X U{—=B})\ {C} = —A for some C € X U{-B}.

Assume that C = —B. Hence X |= —A and thus the set X, A is
inconsistent. Hence, by Corollary 7.1, X, A |k B. A contradiction. Now
assume that C' # —B. It follows that C' € X. Thus there exists a proper
subset, Y, of X such that Y,-B | —A. If follows that Y; A = B and
therefore, as A ¢ X and thus A ¢ Y, the set Y, A entails B. But Y, Ais a
proper subset of X, A. Hence we again get X, A |K B. But by assumption
it holds that X, A K B.

Therefore X, =B K —=A by Corollary 7.1.

Assume that X, -B K —A. Thus X, B |= —A and therefore X, A =
B.

Suppose that X, A is an inconsistent set. Thus X, -—A is inconsistent
as well. It follows that X = —A is the case and, since ‘-B’ ¢ X, it is
not the case that X, =B K—A. A contradiction.

Suppose that for some C' € (XU{A}) it holds that (XU{A})\{C} &
B. Assume that C' = A. Thus (as A ¢ X) we have X |= B. It follows
that the set X, —B is inconsistent and thus, by Corollary 7.1, X, —B |K
-A.

Finally, suppose that C' # A. Hence there exists D € X such that
(X\{D})u{A} = B. Therefore (X\{D})U{—-B} = —-A. But ‘-B’ ¢ X.
Thus (X \ {D}) U{—=B} is a proper subset of X, =B which entails —A.
It follows that X, —B K = A does not hold. We arrive at a contradiction
again.

Therefore, by Corollary 7.1, X, A K B. O

According to Theorem 7.3, strong sc-entailment of a wif B from a
set of wifs X enriched with a wif A yields strong sc-entailment of the
negation of A from X extended with the negation of B, and strong sc-
entailment of the negation of A from X enriched with the negation of
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B yields strong sc-entailment of B from X extended with A. So if you
have a set of wifs X, a formula B which is not entailed by X and whose
negation does not belong to X, and you aim at extending X to the
effect that B becomes strongly sc-entailed by the extended set (that is,
you want to fill the “deductive gap” between X and B in a non-tricky
way)?®, you look for formulas whose negations are strongly sc-entailed
by the set X U {-B}.

Example 7.22. p — ¢ does not entail q. But we have:

{p—=q¢,-q}K-p (7.4)

By applying Theorem 7.3 to (7.4), we get:

{p—=artkq (7.5)

Example 7.23. p — ¢ does not entail p — r. However, the following
holds:

{p—=a-p=>r)tR-l@—r) (7.6)
Thus, by Theorem 7.3:

{p—=aqq—=rtRkp—r (7.7)

Example 7.24. Theset X = {p — ¢,q — r} does not entail r. However,
we have:

p—=aqq—=r,—r}k-p (7.8)
and hence:
r—=>a,9—>nrptr (7.9)

Thus the “deductive gap” between X and r can be filled with p. But it
is obvious that the gap can also be filled with q. However, since we do
not have:

{p—aq.q—r-r}R—q (7.10)

Theorem 7.3 is of no use in indicating this solution. On the other hand,
enriching X with p ensures strong sc-entailment of r from the enriched
set, while extending X by ¢ does not produce this effect.

48 There are many tricky ways of filling a deductive gap between X and B: one can
extend X to an inconsistent set, or one can simply add B or a formula which entails
B to X. Neither of these moves, however, would ensure that B becomes strongly
sc-entailed by the extended set.



128 Chapter 7 Strong Single-Conclusion Entailment

Remark 7.2. The so-called abductive problem is sometimes described
as follows: given the set of formulas X and a formula B such that X
does not entail B, find a formula A such that X and A together entail
B.* Usually, constraints are imposed on “good” solutions to the prob-
lem. For example, it is required that (a) X U {B} must be a consistent
set, and that (b) B is entailed neither by only X nor by only A. Further
criteria are imposed as well (see, e.g., [49]). Now observe that once we
require the relation between X U {A} and B to be strong sc-entailment
rather than classical entailment, criteria (a) and (b) are met automat-
ically. Moreover, X U {A} is a “minimal” consistent set such that the
hypothetical truth of all the wifs in it warrants the truth of B.

49 A warning is in order: this short statement does not exhaust what abduction is
or is conceived to be; cf. [49].
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Strong Entailments:
Comparisons

8.1 Strong versus Classical

The basic properties of strong entailments differ from those of their clas-
sical counterparts. However, one can show that whatever is reachable by
classical entailments from consistent sets of premises, is also attainable
by strong entailments from some finite subsets of these sets. To put it
briefly: no classical consequence of a consistent set is lost.

Notice that it holds that (we present a proof of this well-known fact
only to keep this chapter self-contained):

Lemma 8.1. Fach inconsistent set of wffs has a subset being a Ml-set.

Proof. Let X be an inconsistent set of wifs. By compactness of CPL, X
has an inconsistent finite subset, say, X’. Clearly, X’ # (). Consider the
family of all inconsistent subsets of X’. Let us designate it by W¥. Since
X' is inconsistent, ¥ # (). As X’ is non-empty and finite, there is a
natural number, say, k, where k > 1, such that no set in ¥ has less than
k elements. Let Y be an element of ¥ which comprises exactly k wifs.
Obviously, no proper subset of Y belongs to W. Therefore each proper
subset of Y is consistent. It follows that Y is a Ml-set included in X. O

Let us now prove:

Theorem 8.1 (Simulation of |=). If X |EY and X is consistent, then
there exist a finite subset X1 of X and a finite non-empty subset Y1 of
Y such that X; ||K Y7.
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Proof. If X |=Y, then the set X, —Y is inconsistent and thus, by Lemma
8.1, has subset(s) being Ml-sets. Let Z be a Ml-set such that Z C X, Y.

Since, by assumption, X is consistent, Z ¢ X. We put:
X1 =df XNz
W =4 Z\ X1

Clearly, W C =Y. Moreover, W # 0, and Z = X;,W as well as
X1 NW = 0. Consider the set Y7 defined by:

Y1 =¢ {C: ~C e W}.

We have W = Y7 and hence Z = Xq,—Y7. It follows that Y7 C Y
and X1 N =Yy = (. Since Z is a Ml-set and Z = X3,—Y; as well as
X1 N =Yy = 0, by Theorem 6.5 we conclude that X7 |< Y7 holds. As
each Ml-set is finite, X7 and Y are finite subsets of X and Y, respectively.
Finally, Y7 # 0 since W # 0. O

As a consequence of Definition 7.1 and Theorem 8.1 we get:

Theorem 8.2 (Simulation of =). If X = B and X is consistent, then
there exists a finite subset Z of X such that Z K B.

Proof. Recall that X |= B iff X |={B}, and ZK Biftf Z |< {B}. Since
we have already proven Theorem 8.1, it suffices to observe that the only
non-empty subset of the singleton set { B} is { B} itself. O

The intuitive content of Theorem 8.2 is this: CPL sc-entailment from
a given, finite or infinite, consistent set of wifs boils down to strong
sc-entailment from a finite subset of the set. Theorem 8.1 presents an
analogous result for mc-entailment.

Remark 8.1. Let X and Y be different, yet logically equivalent consis-
tent sets of wifs. The set of wifs classically sc-entailed by X coincides
with the set of wifs classically entailed by Y. However, this need not be
the case for strong sc-entailment. Yet, Theorem 8.2 yields that the set
of wifs attainable by strong sc-entailment from some finite subset of X
equals the set of wifs which are obtainable by strong sc-entailment from
some finite subset of Y, and equals the set comprising all the wifs clas-
sically sc-entailed by X or by Y. Needless to say, the respective subsets
of X and of Y may differ.
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8.2 Strong versus Relevant

As it is well-known, when the sum of two consistent sets of CPL-wffs, X
and Y, is inconsistent, then Var(X) NVar(Y) # 0 (cf., e.g.,[17], p. 375).
It follows that classical sc-entailment from consistent sets of premises to
conclusions which are not valid wifs exhibits the variable sharing prop-
erty. It is worth to note that the same holds true for strong sc-entailment.
Theorem 8.2 together with corollaries 7.11 and 7.7 almost immediately
yield:

Corollary 8.1. Let X be a non-empty, consistent set of wffs. If X = B
and B is not a valid wff, then there exists a finite, non-empty subset Z

of X such that Z K B and Var(Z) NVar(B) # 0.

Variable sharing is often regarded as an indicator (or even a precon-
dition) of relevance in the context of semantic consequence. As such, it
is usually invoked in relevant logics. So the question arises: what is the
relation between strong sc-entailment and accounts of entailment pro-
posed in relevant logics? Since there exist many systems of relevance
logic, an exhaustive answer would have required a separate paper. Let
me restrict here to a few remarks only.

As for CPL, valid wffs falling under the schema:
A—B (8.1)

license sc-entailment of B from A. For the lack of a better idea, let us
call them classical implicational laws or briefly CIL’s.%"

Recall that although all classically valid wifs are strongly sc-entailed
by the empty set, the transition from ) K A — B to A K B is not always
legitimate (cf. Corollary 7.15). Corollary 7.17 yields, in turn, that a
CIL does not license strong sc-entailment just in case its antecedent or
consequent is not contingent.

The first observation is: there exist CIL’s which are both rejected in
some relevant logics®! and do not license strong sc-entailment. Examples
are shown in Table 8.1.

Second, there exist CIL’s which are rejected in some relevant logic(s),
but license strong sc-entailment. Examples are given in Table 8.2.

0 One should not confuse CIL’s with laws of the implicational fragment of CPL.
Both A and B may involve any connective, implication included. What is important
is that implication is the main connective of (the wif which expresses) a CIL.

5! That is, at least one of well-known relevant logics rejects the corresponding law;
there is no space for details. For relevant logics see, e.g., [33] and [38].
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pPA—p—q pA-DIKg
-(p—=p) = q -(p—=p) Kq
p— (g —q) pPKa—q
p—(p—p) pKp—p
p—pV-p pKpV -p
p—qV g PV g
p—=p —=@—q9 | p=pPKa—g
=9 —=@—p |[Pr—=qKp—p

Table 8.1: Examples of CIL’s rejected in some relevant logics (left col-
umn) which do not license strong sc-entailment (as depicted in the right
column).

p— (¢ —p) pK (¢ —p)
p—(-p—q) pR(p—q
p—=(p—=q9 —q pR—q —q
(p—q) —p) —p (p—¢q) = pRp
p—=g—=r)—=@g—=>@—r) | p=2@=r)Rg—>(p—r)
pAg— (p—q)N(qg—p) pAgR (p—q)A(qg—p)
pA(pVg) —q pA(pVqKq

Table 8.2: Examples of CIL’s rejected in some relevant logics (left column)
which, however, license strong sc-entailment (as depicted in the right
column).

Third, it happens that a CIL which is accepted in a relevant logic
does not license strong sc-entailment. The “mingle” formulas, i.e. wiffs of
the form A — (A — A), provide simple examples here.

8.3 Strong versus Connexive

Connexive logics are usually characterized as systems validating the fol-
lowing theses:??

~(—A 5 A) (8.2)

2 For connexive logics see, e.g., [35]. Theses (8.2) and (8.3) are attributed to
Aristotle, while theses (8.4) and (8.5) are ascribed to Boethius.
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—(A— -A) (8.3)
(A— B) —» (A — —B) (8.4)
(A— -B) = —-(A— B) (8.5)

As strong sc-entailment from the empty set is restricted to classically
valid wifs only (cf. Corollary 7.7) and some wifs of the forms (8.2) —
(8.5) are not classically valid, it is not the case that all the wifs falling
under the schemata (8.2) — (8.5) are strongly sc-entailed by the empty
set.?3 It is worth to note, however, that the following are true:

Corollary 8.2. For any wff A:
1 A K A,
2. A K -A.
Proof. Suppose that =A | A for some wff A. Thus =A = A. On the

other hand, by Theorem 6.1 it follows that both =A and A are contingent
wifs. Hence —A B A.

We reason analogously in the case of (2). O

Thus a negation of a wff never strongly sc-entails the wif itself, and a
wif never strongly sc-entails its negation. Corollary 8.2 seems to express
an idea akin to that which lies behind having (8.2) and (8.3) as theses.

Corollary 8.3. For any wffs A, B:
1. if AR B, then A K =B,
2. if A K —B, then A K B,
Proof. Assume that A K B. It follows that A is a consistent wff and

A | B. Therefore there exists a valuation v such that v(A) =1, v(B) =
1 and hence v(—B) = 0. Thus A £ —B. It follows that A |K —B.

We reason similarly in the case of (2). O

A due comment on Corollary 8.3 is analogous to that on Corollary
8.2.

53 However, some of them are classically valid and thus are strongly sc-entailed by
the empty set. For instance, we have § K —(=(p A —p) = p A -p), 0K =((p = p) —
~(p—=p)),or OK (pV—p—=pA-p) = =(pV-p—=(pA-p)).
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8.4 The First-Order Case

In chapters 6 and 7 we have dealt with the classical propositional case.
So a natural question arises: what, if anything, will change when we
move to the first-order level and consider strong entailments based on
First-Order Logic (FOL)?

As it is well-known, sc-entailment in FOL can be defined either in
terms of satisfaction or in terms of truth, and similarly for mc-entailment.
However, truth of a wff in a FOL-model equals satisfaction of the wif
under all assignments of values to individual variables, where the values
belong to the universe of the model. Therefore the respective concepts
of entailment do not coincide when sentential functions, that is, wffs in
which free variables occur, enter the picture, although they coincide on
FOL-sentences (i.e. wifs with no free variables). Similarly, inconsistency
can be defined either as unsatisfiability or as the lack of a FOL-model
which makes true all the wffs in question. These are not the same thing
if sentential functions are allowed.?

When one wants to move from the propositional level to the first-
order one, three possibilities emerge.

The simplest solution is to assume that strong entailments, as well as
the other semantic notions employed, are defined for sentences only. The
concept of truth under a CPL-valuation is to be replaced with the concept
of truth in a FOL-model. Then the results concerning CPL “translate”
into the respective results concerning the “sentential part” of FOL. Of
course, this does not pertain to results which rely on the assumption
that the wffs considered are propositional, in particular to Theorem 6.4.
Needless to say, an analogous remark applies to the other options pre-
sented below.

The second option is to allow for sentential functions and to replace
“true under a CPL-valuation” with “satisfied in a FOL-model under an
assignment of values to individual variables.” In such a case inconsistency
would mean unsatisfiability. There is, however, a price to be paid. While
sc-entailment defined in terms of satisfaction ensures the transmission of
truth, mc-entailment defined by means of satisfaction (i.e. roughly, by
the clause: “for every assignment ¢: if all the wifs in X are satisfied under
t, then at least one wif in Y is satisfied under ¢”) does not warrant the
existence of a true wif in Y when all the wffs in X are true. This lack of

5% For instance, the set {P(z), ~VzP(z)}, where P is a one-place predicate, is satis-
fiable, but there is no FOL-model which makes its elements simultaneously true.
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warranty shows up in the case of mc-entailed sets containing sentential
functions. As a consequence, the intuitive meaning of the concept of
strong mc-entailment changes.

As for the third option, one allows for sentential functions and re-
places “true under a CPL-valuation” with “true in a FOL-model.” Now
consistency of a set of wifs would mean the existence of a FOL-model
which makes all the wifs true. Contingent wifs are these which are true
in some, but not all FOL-models. However, sc-entailment of A from X
amounts to inconsistency of the set comprising X and the negation of
the universal closure of A. Similarly, mc-entailment between X and Y
holds iff the set X,—Y is inconsistent, where Y is the set of univer-
sal closures of elements of Y. So a “translation” of results concerning
CPL should be performed with caution. In particular, whenever con-
sistency /inconsistency of propositional formulas of the form —A or sets
of such formulas have been considered, first-order wifs of the form —A4,
where A is the universal closure of A, should be used. For example, the
FOL counterparts of theorems 6.5 and 7.1 now are:

X|RKY dff XN-Y =0 and X,-Y is a Ml-set.
XKB iff ‘"B’ ¢ X and X,-B is a Ml-set.

Another example is this. What we have called “deduction theorems” for
strong entailments (cf. theorems 6.7 and 7.13), relied upon Corollary
6.11. However, its counterpart does not hold for FOL when entailments
are defined in terms of truth. Instead, we have:

ZA|EWf Z|=[A— W]

As a consequence, in order to get counterparts of theorems 6.7 and 7.13
one has to replace A with A. An analogous remark pertains to corollaries
6.12, 7.14, and 7.15. As for Theorem 7.3, both A and B are to be replaced
with their universal closures.

8.5 Strong Entailments in Non-Classical Logics

In our analysis of strong entailments we have concentrated upon Classical
Logic. A natural next step is to turn to non-classical logics. Which
of the results presented above would remain valid if we defined strong
entailments in terms of entailments based on a non-classical logic? No
doubt, this is an interesting question. Yet, it deserves a separate paper
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or even a series of papers. So let me only comment on the relation
between the concepts of strong entailments and the concept of minimally
inconsistent set. Theorems 6.5 and 7.1 (as well as their counterparts for
FOL) show how these concepts are interconnected for Classical Logic.
However, analogues of theorems 6.5 and 7.1 fail in some non-classical
logics. Negationless logics provide trivial examples here, but there are
others. For instance, in Intuitionistic Logic (INT) the following:

{=p,p} Eint L
{=—p} Nt L
{=p} FENT L

hold and thus {——p, —p} can be regarded as a Ml-set. Needless to say,
'=p’ ¢ {—=—p}. On the other hand, we have:

—=p = INT P

and hence, assuming that strong sc-entailment presupposes sc-entailment,
——p and p are not linked with strong sc-entailment. It follows that the
“intuitionistic” analogues of theorems 7.1 and 6.5 do not hold.



Chapter 9

Deep Contraction

The concepts of strong entailment have found applications in argument
analysis and in the area of belief revision (cf. [65]). Since argument anal-
ysis is not in the scope of this book, in this chapter I concentrate upon
the latter issue, extending (in section 9.3 below) the material already
published in [65].

9.1 Intuitions

Let us imagine that we are working with a consistent non-empty set of
CPL-wffs X (for instance, representing a database or a belief base) and
that a contingent CPL-wff B has been derived from X. Assume that
the derivation mechanism used preserves CPL-entailment. Now suppose
that we have strong, though independent from X, reasons to believe that
=B rather than B is the case. As long as we stick to Classical Logic,
extending X with =B is not a good move. An option is to switch to some
non-monotonic logic and its consequence operation. As we have shown,
strong sc-entailment is not monotone. But no extension of X produces
=B as a strongly sc-entailed consequence of X. This is due to:

Corollary 9.1. If X K B, then there is no proper superset Z of X such
that Z < —B.

Proof. Let X K B. Suppose that Z < =B, where X C Z and X # Z.
If XK B, then X = B and hence Z = B. If Z|<K =B, then Z = -B.
Therefore Z is inconsistent and thus, by Corollary 7.1, Z |k —B. O
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A rational move is to contract X first, and in a way that prevents the
appearance of B as a conclusion of any legitimate (i.e. preserving classi-
cal entailment) derivation from the contracted set. How to achieve this?
One can examine the derivation of B from X that has actually been per-
formed, identify the elements of X used as premises, and then contract
X by removing from it at least one wif which was used as a premise
in the performed derivation. This, however, will not do: it is possible
that B is classically entailed by many subsets of X, including some that
do not contain the just removed wff(s), and thus B can still be legiti-
mately derived from the set contracted in the above manner. Examining
all possible legitimate derivations of B from X constitutes a difficult if
not a hopeless task. However, a solution is suggested by the content of
Theorem 8.2. By and large, it suffices to consider all the finite subsets of
X that strongly sc-entail B, and to remove from X exactly one element
of every such subset. A contracted set obtained in this way does not
CPL-entail the wif B and therefore no legitimate derivation leads from
the set to B. Or, to put it differently, X has been deeply contracted
w.r.t. B, since it is ensured that B is not entailed by the result of the
contraction.

Remark 9.1. The way of proceeding proposed above is akin to (but
not identical with) the well-known idea of consistency restoring by cal-
culating a minimal hitting set of the family of all minimally inconsistent
subsets of an inconsistent set in order to eliminate elements of the hitting
set from the inconsistent set in question.’® The general idea goes back to
[36] and gave rise to some related constructions.’® However, contraction
of the kind we are interested in this chapter does not aim at consistency
restoring, but at making a legitimate deduction of B from the resultant
set impossible. These are interconnected, but yet different issues.

In order to model deep contraction we will make use of some concepts
already introduced in section 1.7.1 of Chapter 1. Among them, the
most useful is the concept of a ch-set of a family of sets of wifs & (cf.
Definition 1.11 in Chapter 1). A ch(®)-set is a set comprising exactly
one representative of each non-empty set belonging to ®. Intuitively, a
ch(®)-set can be construed as a “choice set”: one chooses from each set

% A set X is a hitting set of a family of sets Fiff X NY # 0 foreach Y € F. A
hitting set of F is minimal if no proper subset of it is a hitting set of F. Hitting sets
are also called choice sets. For hitting/choice sets see, e.g., [47], pp. 335— 338.

% Cf. e.g., [6].
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in ® a wif which performs the function of representative of the set. In
can be proven (cf. Proposition 1.10) that for each family of sets of wifs,
®, there exists at least one ch(®)-set.

9.2 Deep Contraction Modelled

Let us now come back to the contraction issue. The following holds.

Theorem 9.1 (Deep contraction). Let X be a consistent non-empty set
of wffs, and let B be a non-valid wff such that X = B. Let

&={WCX:WKk B},
and let Z be a ch(®)-set. Then (X \ Z) £ B.

Proof. By Theorem 8.2, the family ® is non-empty. If B is non-valid,
() ¢ ®. Thus X' # 0 for each X’ € ®, and hence Z # 0.

The set X \ Z is consistent, since X is, by assumption, consistent.

Suppose that (X \ Z) | B. It follows that (X \ Z) # 0 (as B is
not valid) and, by Theorem 8.2, that Y KB for some finite subset Y of
X \ Z. Moreover, Y # (; otherwise B would have been valid. But the
only subsets of X that strongly sc-entail B are the sets in ®. Hence
Y = X° for some element, X°, of ®. But (X'NZ) # 0 for each X' € ®.
Hence (X° N Z) # 0. On the other hand, (Y N Z) = 0 due to the fact
that Y is a subset of X \ Z. It follows that Y # X°. We arrive at a
contradiction. Therefore (X \ Z) £~ B. O

Let us stress that Theorem 9.1 speaks about any ch-set of the family
of subsets of X which strongly sc-entail B. There are usually many
such sets. Each of them may be subtracted from X in order to arrive
at a subset of X that does not (classically) entail B. In other words,
“deep contraction” can be successfully performed in many ways and its
outcome depends on the ch-set chosen.

A simple example may be of help.

Example 9.25. Let X = {pV ¢ — r,p,q} and B = r. The relevant
family of subsets of X each of which sc-entails r comprises: {pVq — r,p}
and {pV q¢ — r,q}; let us designate it by ®. The ch(®)-sets are:

{p,q} (9.1)
{pvag—r} (9.2)



140 Chapter 9 Deep Contraction

The result of deep contraction of X w.r.t. r, depending on the ch(®)-
set used, is:

{pvg—r} (9:3)

or

{p,q} (9.4)

Which ch(®)-set is to be used depends on epistemic factors. By the
way, the example presented above shows that deep contraction does not
amount to subtracting a minimal choice set of the family of all Ml-sets
in question.

Belief revision theories view contraction as an operation which is sup-
posed to achieve its goal(s) in an “economical” manner: the loss should
be kept to a minimum. This means many things, depending on an ac-
count advocated. As for deep contraction, the “minimalization of loss”
issue is only of a secondary importance. As for the multiplicity of pos-
sible outcomes, and their dependence on factors different from the set
subjected to be contracted and the wif w.r.t. which the operation is
performed, deep contraction does not differ from other contraction oper-
ations characterized in belief revision theories. Note, however, that deep
contraction has a kind of computational flavour. In order to perform it
one needs a ch-set of the family of subsets of X which strongly sc-entail
B, and this requires that the family has to be “calculated” first. Given
the content of Theorem 6.5, this, in turn, can be achieved by identifying
all the minimally inconsistent subsets of an inconsistent set of some kind.
More specifically, all minimally inconsistent subsets of X U {—B} such
that =B belongs to each of them have to be identified first. Then the
family:

{Y C X :YU{-B} is a Ml-set and ‘-B’ ¢ Y'} (9.5)

which comprises all the subsets of X which sc-entail B, is taken into
consideration and its ch-sets are calculated. Finally, one subtracts a ch-
set of the family (9.5) from X and arrives at a subset of X which does
not entail B anymore.

Algorithms for identifying all minimally inconsistent subsets of an
inconsistent set are already known in the literature.®”

Remark 9.2. A set of wifs X supposed to be contracted w.r.t. B may
be either finite or infinite. In the latter case it can happen that the
family of subsets of X that sc-entail B is countably or even uncountably

7 See, e.g., [32], and [6].
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infinite. It follows that the relevant ch-sets may be infinite. However, we
are dealing here with Classical Logic, in which entailment is compact:
everything entailed by an infinite set of wils is also entailed by some
finite subset(s) of the set. One can easily prove:

Corollary 9.2. Let X be an infinite consistent set of wffs, and let B
be a non-valid wff such that X |= B. If Y is a finite subset of X such
that Y = B, and Z is a ch(®)-set, where ® = {W CY : W K B}, then
XnNn({Y\Z)EB.

Proof. Suppose otherwise. Then (Y \ Z) = B, contrary to Theorem
9.1. O

Thus when entailment is compact, an infinite set X can also be con-
tracted to the effect that B is not entailed by the resultant set, without
relying on infinite ch-set(s) that correspond(s), in the way described
above, to the whole X. It suffices to use a ch-set which corresponds to
a finite subset Y of X that classically entails B. Needless to say, the
resultant set X N (Y \ Z) will be finite.

9.3 A Procedure of Identifying All Strongly
Entailing Subsets of a Finite Set of Premises

In this section a procedure by means of which one can identify all strongly
entailing subsets of a consistent and finite set of wifs that entails a given
wif, is sketched. According to what has been said above, their identifi-
cation is a prerequisite for a deep contraction w.r.t. the entailed wif.

Let X be a finite consistent set of wifs such that X = B. Our aim
is to find all the finite subsets of X that strongly sc-entail B.

If B is a valid wif, then ) is the only finite subset of X that strongly
sc-entails B. So the problem is solved in a trivial way.

If B is not valid, then () does not strongly sc-entail B. At the same
time X # (), B is consistent and ‘-B’ ¢ X.

For conciseness, we write card(X) = n instead of “X has n elements.”
If card(X) = 1, then X itself is the only set looked for.

Assume that card(X) = n, where n > 1. We define the following
families of sets of wifs:

Yy ={Z:Z={A,~B}, where A€ X} (9.6)
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For each j, where 1 < j < n, we define the corresponding family of sets
T; of wifs as follows:

Tj = {Z = {Al, e ,Aj,—\B}, where {Al, . ,Aj} - X} (98)
Note that each element of Y, where 1 < k < n, can be displayed as:
Z' U {-B} (9.9)

where Z/ C X and card(Z') = k. As ‘=B’ ¢ X, for any Y € T} we have
card(Y) =k + 1.

We consider the following sequence of families of sets of wifs:
T1,Yo,..., Ty (9.10)

At this point we aim at identifying all the elements of the following family
of sets:

G T (9.11)
=1

that are Ml-sets. (By Theorem 8.2, at least one element of (9.11) is a
MIl-set.) The procedure sketched below solves the problem by performing
a series of consistency checks.

Step 1. We consider the elements of T one after another in order to check
whether a given element is consistent; it is clear that each inconsistent
element of T is a Ml-set of the required kind.?® The outcome is:

(X1,T)

where ¥p is the set of all the inconsistent elements of Y; (and hence
MI-sets). If there are no such elements, 31 = ); otherwise X1 # (). Let:

Z{:df {YeXYo: W CY for someW € ¥}
I'; is defined as follows.
1. If ¥4 = Ty, then Ty = 0.
2. If Sy # Y1, then Ty = (To\ 37).

58 Since B is not valid, ‘~B’ is not inconsistent. X is, by assumption, a consistent
set, so each wif in X is consistent.
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We stop if I'; = ), otherwise we go to Step 2, at which we consider all
the elements of I'; by checking their consistency.

A comment is in order. When ¥ = T, each set of the form {A, - B},
where A € X, happens to be a Ml-set and hence the family (9.11) con-
tains no further Ml-sets. If X1 # Y7 and 31 # (), at the second step we
consider only the elements of To which belong to I'y. This is due to the
fact that each element of Elf is an inconsistent set which has an incon-
sistent proper subset. So there is no reason to consider the elements of
T, that belong to Zlf , since we know in advance that none of them is
a Ml-set. So we consider the set To \ EI/ only. If, however, X1 = (), we
have E{ = () and thus I'1 = Y9, that is, the whole set T5 is taken into
consideration at the next step.

Assume that we did not stop at Step ¢, i.e., that T'; # 0.

Step i+1. We check the consistency of the consecutive elements of the
set I'; obtained at step 4; recall that I'; C T;11. The outcome is:

(Xit1,Lig1)

where ;11 is the set of all the inconsistent elements of T';, if there are
any, and ;1 = () otherwise, while I';; is defined by the conditions:

1. ]f Zi+1 = Fi, then FZ'+1 = @
2. If Sis1 # Dy, then Doy = (Tiga \ 27 ).

where
»/

L1 =ar 1Y € Yipo : W CY for some W € %}

We stop if I';11 = (); otherwise we go to Step 7 + 2.

Observe that the elements of 3;1, if there are any, are Ml-sets. To
see this, assume that Y € ;1. Thus Y has been selected from the
elements of I';, that is, Y € I';. Suppose that Y has inconsistent proper
subset(s). As Y is finite, the number of its inconsistent proper subsets is
also finite. So there exists an index e < ¢+ 1 such that some inconsistent
proper subset of Y, say, Y*, has exactly e elements and no inconsistent
proper subset of Y has less than e elements. But each proper subset of
Y™ has at most e — 1 elements and is a proper subset of Y. Hence Y* is
a Ml-set included in Y such that card(Y*) = e. As such, Y* belongs to
Ye—1. It follows that:

Yyex/,
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and hence Y ¢ T';. A contradiction. Therefore Y has no inconsistent
proper subset. But Y is inconsistent, because Y € ;1. Hence Y is a
Ml-set.

Since X is a finite non-empty set, it is clear that the procedure
sketched above terminates in a finite number of steps and produces the
required result. Observe that when X, 1 = 0, the set looked for is X
itself. However, we arrive at this point when consistency checks of all
sets of the form Z U {—B}, where Z is a non-empty proper subset of X,
have produced affirmative results. There are 2" — 2 such sets. Hence the
procedure described above provides the required result after performing
at most 2" — 2 consistency checks. This is the “worst case” possible.



Chapter 10

Towards Proof Theory
for Strong Entailments

10.1 Introduction

Both strong multiple-conclusion entailment and strong single-conclusion
entailment are subrelations of the respective “standard” entailments re-
lations and thus of the corresponding consequence relations. Strong en-
tailments are defined in semantic terms. Is it possible characterize strong
entailments proof-theoretically? In this chapter I provide an affirmative
answer to this question, yet restricted to the classical propositional case.

As Theorem 6.5 shows, a problem of the form:
(P) Does X strongly mc-entail Y ¢
splits into two sub-problems:
(P1) Is it the case that X N =Y =(?
(P2) Is X, Y a Ml-set?
Similarly, due to Theorem 7.1, a problem of the form:
(P’) Does X strongly sc-entail A?
splits into:
(Py’) Is it the case that ‘—=A’ ¢ X ?

(P2’) Is X,—A a Ml-set?
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Questions (P1) and (Py’) can be resolved by syntactic means. But either
(P2) or (P2’) is a problem that pertains to a semantic property. In order
to solve it syntactically one needs a proof-theoretic account of Ml-sets.

10.2 Calculating Ml-sets by Means
of the System HI™t

The system HIPL presented in Chapter 3 provides a proof-theoretic ac-
count of finite Hl-sets (that is, holistically inconsistent sets; cf. Definition
3.4) of CPL-wffs. However, the system can be employed, in a somehow
tricky way, to calculate Ml-sets of CPL-wffs. This is due to the fact that
a finite Ml-set can be represented by the corresponding Hl-set.

Recall that, due to Theorem 6.3, any Ml-set of CPL-wffs is non-empty
and finite. Let Z = {C1,...,C,}. We assign to Z a set Z°, defined in
the following way:

Definition 10.1. Let Z = {C4,...,Cy}.
1. If n=1, then Z* = {C1}.
2. If n>1, then

Z* = {CyN...NCp,C1A---NCj_1 ACji1A...ACyy...;CiA. . .ACpr1}.
The following holds:

Corollary 10.1. If Z = {C,...,Cy}, then Z is a Ml-set iff Z*® is a
HI-set.

Proof. (=) If Z is a Ml-set, then Z is inconsistent. Suppose that Z° is
consistent. It follows that Z is consistent. Thus Z* is inconsistent.

As Z is a Ml-set, each proper subset of Z is consistent. So each
element of Z*® is consistent.

Therefore Z° is a HI-set.
(<) If Z* is a Hl-set, then Z*® is inconsistent. As Z°® is a Hl-set, all
the wifs in Z*® are consistent and this amounts to the consistency of all
proper subsets of Z. O

Thus in order to establish that Z is a Ml-set it suffices to provide
a HIPL_proof of a sequent which has all the elements of Z* left to the
turnstile, F.

However, the system HIPL “calculates” also Hl-sets which do not
represent any Ml-set. Moreover, proofs of sequents in HIPL are rather
tedious. So let me turn to another system.
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10.3 The Calculus MIPL

In this section I present a calculus, dubbed MICPL in which provable
sequents of a strictly defined form correspond to Ml-sets. In the case
of MICPL however, sequents are construed differently than in HIPt (see
below).

Rules of MIPL operate on sequences of sequents. Since a sequence
of sequents is customarily called a hypersequent, MIPL may be called
a calculus of hypersequents. But speaking about hypersequent calculi
usually brings into mind Avron’s seminal works.?® However, the format
of MICPL differs considerably from that of Avron-style hypersequent cal-
culi. In particular, derivations and proofs in MIPL are not trees having
hypersequents in their nodes, but sequences of hypersequents. Rules of
MICPL transform hypersequents into hypersequents, and a rule is always
applied to the last term of a derivation constructed so far. Last but not
least, MICPL has no axioms, but comprises rules only.

Given these substantial differences, and taking into account that the
concept of hypersequent is loaded with references to Avron-style calculi,
let me use a new term for a sequence of sequents. The term chosen
is “seqsequent,” after Latin sequentia, which means (among others) “se-
quence.”% No doubt, saying that we aim at a calculus of seqsequents is
less misleading than speaking about a calculus of hypersequents. A wa-
rning is needed, however. As we will see, the order in which sequents
occur in a “seqsequent” does not determine the order of application of
rules of the calculus. We are speaking about a calculus of seqsequents
only to stress that rules of the calculus operate on “seqsequents,” that is,
a rule transforms a sequence of sequents into a sequence of sequents.

10.3.1 Numerically Annotated Wffs, Sequents,
Seqgsequents, and More

We will be operating with sequents based on sequences of numerically
annotated wifs.

%9 Starting from the influential paper [2]. Avron-style approach is not the only one,
however. A reader interested in different types of hypersequent calculi (including
those in which hypersequents are construed as sets or multisets of sequents rather
than their sequences) is advised to consult [23], Chapter 4.7.

60 «Seq” is not a prefix in English, but since many English words begin with prefixes
rooted in Latin, I hope that this proposal is acceptable. A reader familiar with
programming is kindly requested to suspend any associations he/she may have.
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Definition 10.2 (Numerically annotated wff; na-wff). A numerically an-
notated wff (na-wff for short) is an expression of the form Al where A
is a wff and i is a numeral from the set {1,2,3,...}.

Let us stress that numerals are here proof-theoretic devices only. It
is not assumed that they refer to possible worlds or perform the function
of labels.

Notation In order to keep the number of brackets to a minimum, the
following notational convention is adopted: an inscription of the form
— Al refers to a wif of the form —A annotated with numeral .

From now on, the term “sequent” will be understood in the following
way:

Definition 10.3 (Sequent). A sequent is an expression of the form:

cll . climl 1 (10.1)
where C’gm, ey C’r[,im] s a finite sequence of na-wffs.

When m = 0, we write the corresponding sequent as () . Although we
consider sequents with empty succedents, it is no accident that we put
the turnstile - into a sequent. This will allow us to differentiate between
operations on sequents and operation on sequences of annotated wifs (see
below).

Remark 10.1. Note that sequents used in MIPL differ from these used
in HIPL. The former have sequences of numerically annotated wifs to
the left of the turnstile, while the latter have sets of wifs on the left to
the turnstile.

We need the concepts of atomic sequent, closed atomic sequent, and
open atomic sequent.

Definition 10.4 (Atomic sequent). An atomic sequent is an expression
of the form:

il ] (10.2)
where lq,...,l, are literals, that is, propositional variables or their nega-

tions.

Definition 10.5 (Open atomic sequent and closed atomic sequent). An
atomic sequent:

il e
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18 closed if it involves na-wffs based on complementary literals, i.e. there
exist lg-lj],l,[j’“} (1 < j,k < m) such that l; = —lg. An atomic sequent is
open if it is not closed.

We use the letters p, 0,0, &, (, possibly with subscripts, as metalan-
guage variables for finite sequences of na-wffs, the empty sequence in-
cluded.

Some further technical concepts are needed. The expression Form
refers to the set of CPL-wifs.

Definition 10.6 (The set of wffs of a sequent). Let o F be a sequent.
wif(o ) = {A € Form : AW is a term of o}.

Definition 10.7 (Withdrawal). Let o be a finite sequence of na-wffs. By
f\[i].](a) we mean the subsequence of o resulting from it by removing all
its terms (i.e. na-wffs) which are annotated with the numeral i;.

Needless to say, if o - is a sequent, so is f\[ij](a) .61

Definition 10.8 (Seqgsequent). A segsequent is a finite sequence of se-
quents.

In this chapter we use the letters @, ¥, I', with subscripts or super-
scriptswhen necessary, as metalanguage variables for seqsequents.

Definition 10.9 (Constituent of a seqsequent). By a constituent of a
seqsequent we mean any sequent which is a term of the seqsequent.

Finally, we distinguish ordered sequents.

Definition 10.10 (Ordered sequent). An ordered sequent is a sequent
which falls under the schema:

1
clt ... cm (10.3)
where m = 1, and C4,...,C,, are pairwise syntactically distinct wffs
when m > 1.
61 If i; is the only numeral which occurs in na-wffs of o, then f i;1(0) - equals 0

which is, by definition, a sequent. If o == 0 F, then f\;,1(0) F= 0 F. Of course,
wff(@ ) = 0.
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Thus, besides sequents of the form Al -, ordered sequents are sequents
whose consecutive terms (with the exception of the turnstile), are pair-
wise syntactically distinct wifs annotated with consecutive numerals (oc-
curring in curly brackets), starting from the numeral 1.2 At the met-
alanguage level, ordered sequents of the form (10.3) will be concisely
written as:

m
ol - (10.4)
As we will see, in order to show that {Cy,...,C),} is a Ml-set it

suffices to prove the corresponding ordered sequent C[g{ T,

10.3.2 Rules and Proofs

|CPL

In order to present the rules of M in a concise manner let us introduce

some notational conventions first.
Following [46], we distinguish between a-wifs and S-wifs, and we

assign two further wffs to any of them. This is explained in Table 10.1
below.

[ o [afal B [B]HB]
ANB | A | B | ~(AAB) | A | -B
ﬁ(A\/B) -A | =B AV B A B
—\(A—>B) A -B A— B —-A B

Table 10.1: a-wffs and B-wffs.

We use the sign " as the concatenation-sign for sequences of na-wifs.
For brevity, we assume that a metalanguage expression of the form
o 'All denotes the concatenation of sequence o and the one-term se-
quence (AlM) while a metalanguage expression of the form o 'All ¢
refers to the concatenation of sequence o ’All and sequence 6.

The semicolon will perform the role of the concatenation-sign for
seqsequents. We usually omit angle brackets when referring to a seqse-
quent which has only one constituent. Thus ¥; o F stands for the
concatenation of ¥ and (o t). The expression ¥; o b; & refers to the
concatenation of ¥; o and &.

The calculus MIPL has only rules which operate on segsequents. No
axioms are provided. Here are the primary rules of MICPL:

52 Each ordered sequent is a sequent, but not the other way round. For instance,
the expressions pi¥, ¢ + and p, pB! I are sequents in our sense, but none of them is
an ordered sequent. Similarly, pm,p[l] F and pm,p[zl - are sequents, though neither
of them is an ordered sequent.



10.3 The Calculus M1t 151

P o'l g @ (i
D; a’a[li]’a[;]’m—; v
¢ o Bl o W
& o B ok o ok w
O, 0! ——Al o W
b o Al o, w
Any of @, ¥, 0,0 can be empty.

Observe that rules of MICPL “act locally”: if a rule is applied to a
segsequent, only one constituent and only one occurrence of a na-wif in
the constituent are acted upon, while the other occurrences and other
constituents remain unaffected. Moreover, any new na-wff that comes
into play due to an application of a rule is annotated with the same
numeral as the na-wif acted upon.

We are now ready for an introduction of the concept of proof of an
ordered sequent.

Definition 10.11 (MI®PL-proof of an ordered sequent). A finite sequence

of seqsequents Ty, ..., Iy is a MIPY_proof of an ordered sequent C[mm] H
uf
n= (e,

I'j 11 results from I'; by a rule of MICPL

, where 1 < 5 < n,
each constituent of I, is a closed atomic sequent,

for each k € {1,...,m} there exists a constituent o = of I}, such
that the sequent f\(y(o) &= is an open atomic sequent or is of the

form 0 .

An ordered sequent is provable in MICPL iff the sequent has a MICPL-proof.

e o =

Remark 10.2. The concept of proof introduced above is non-standard
in many respects. First, a proof is a sequence of seqsequents. Second,
notice that it is an ordered sequent (i.e. a sequent in which wifs occurring
left of the turnstile are annotated with consecutive numerals, starting
from 1) that performs the role of an “input” of a proof: the first line of
a proof is a one-term seqsequent involving an ordered sequent. We do
not introduce the concept of proof of a sequent in general, but only of
an ordered sequent. As we will see, this is sufficient for our purposes.
Third, MI®PL-proofs in are strictly linear: I'j 1 results by a rule from I}
only.
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As we will show (cf. Theorem 10.1 below), the existence of a MIPL-
proof of an ordered sequent o F ensures that wff(o ) is a Ml-set of
CPL-wfifs.

10.3.3 Examples of Proofs
Example 10.26. The one-term sequence
(o, 2 1)
is a proof of the ordered sequent:
Pl —pl2 (10.5)
since fy ] (pl), =ply F = —pl - and A (P, —pl2) b = pltl |,

For brevity, in what follows we will be omitting angle brackets in the
first line of a proof, and in the case of one-term segsequents.

Example 10.27. Here is a proof of the ordered sequent:
(p A—p) H (10.6)
(Inscriptions of the form Rgf} do not belong to proofs, but indicate what

rule has been applied to the uppermost seqsequent. Horizontal lines
separate terms of a proof.)

—p)
(pA—p)H RE]
pll, —pll -
Notice that fi (pM, =pt ) equals 0 .
Example 10.28. The following:

M (= 2]
po(p = @) E R

(67

P —pl g2l -

is a proof of the ordered sequent:
pM,—~(=p — )P + (10.7)

For the sake of transparency, from now on we highlight the na-wiff
on which the rule indicated to the right acts upon. We tick exemplary
occurrences of numerals due to which clause (4) of the definition of proof
is satisfied.
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Example 10.29. Here is a proof of the ordered sequent:

(pv M, —~pP, ~gP, (10.8)
(p \ q)[l] ’ _'p[2]7 _'q[:ﬂ - R[3]
), =p2, =B s g —pf2], ~gB T 7
Example 10.30. A proof of the ordered sequent:
(p = @M, pP, —¢H - (10.9)
R

vV v v
—pltV1 pV] gl - gl pll —gB3Y] -
Example 10.31. The following is a proof of the ordered sequent:
(p A (=pV @), =g - (10.10)

(pA(mp V)l ~¢

P! v~ -

R

(1]
2v] - R/J’

plY1 =pltl, =g 1 pli], gl1], gl

Example 10.32. A proof of the ordered sequent:

(p— (a—= )M, (p A g, Bl (10.11)

(p—(g— )], (pA P, Bl

R
(p— (g = )l , pl2 g2 Bl -

(1]
Rs

plt] pl2) g 8l b (g s )1 pl2 g 03]

I 1 - I IR N N Y

Example 10.33. A proof of the ordered sequent:

pV (vl v v (10.12)



pV gV =V, =(pvr)l -

R
(v gvo)l, seve®,-p® —rPF
R
(v (qv )t P, —g?, —pl¥, - it
R
5
Pl Spl2l g2l Ll B gy ) pl2 g2l Ll ey )
R
v 7 7 Rs
e e A O S R R 2
Example 10.34. A proof of the ordered sequent:
(= (g—=r)M (0= P, ~(p - P+ (10.13)
= @=r)" =P, =P+ o
Ra
(= (g—=m)M, (0= @, pP, P - "
R
I I 5
(p— (g—= )M =P pl¥ =B b (p — (g — 7)1, g, pBl, =P 1 N
R
g
R
5

2]

=, —pl, pBl Bl 1y gl —pl pBl By Bl B8 B (p— (g — )M g pll B

—pltl, —pll pBl =Bl e gl pl2] 5B B e [ 21 B8] B s U G121 18] B3] = r)[l] 7q[2]’p[3]7ﬁr[3] -

2V

v Vv
I TR T T L R I C TR
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10.4 Soundness and Completeness

10.4.1 Some Lemmas

In order to prove soundness and completeness of the calculus MIPL with
respect to Ml-sets we need a series of corollaries and lemmas.

As an immediate consequence of definitions introduced in sections
10.3.1 and 10.3.2 we get:

Corollary 10.2. X is a Ml-set iff there exists an ordered sequent C[g{] F
such that X = Wff(C[mm] F) and

1. WfF(C[g{] k) is an inconsistent set, and
2. for each k € {1,...,m}: the set Wff(f\[k](C[mﬁﬂ F)) is consistent.
The following hold:

Lemma 10.1.
1. wff(o ' all 7 0 &) is inconsistent iff wff(o ' a[li] ! a[;] "0 F) s
inconsistent.
2. wif(o ! 7 0 V) is inconsistent iff wff(o’ {ﬂ "6 +) is inconsistent
and wif(o ' ,Bg] "0 F) is inconsistent.
3. wff(o " AUl 7 9 &) is inconsistent iff wif(o ' —=All " 0 +) is incon-
sistent.

Lemma 10.2.

1. If &; ot W results from @; 0 F; W by a rule of MIPL then the
set wff(o t) is inconsistent iff wff(0 ) is an inconsistent set.

2. If &; o1 F; o9 b3 W results from &; 0 &; ¥ by a rule of MICPL,
then both wff(o1 F) and wff(og F) are inconsistent sets iff wff(0 )
15 an inconsistent set.

Proof. If &; o b; W results from &; 6 F; ¥ by a rule of MIPL then
f involves a numerically annotated a-wif or a numerically annotated
double negated wif. But X, « |= 0 iff X, 1,9 |= 0, and X, A |~ 0
iff X,A|=0.

If &; o1 F o9 F; W results from &; 6 ; ¥ by a rule of MIPL, then a
numerically annotated S-wif is a term of 6. Yet, X, 5 |= 0 iff X, 5, [=0
and X, 3 |= 0. O
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Lemma 10.3. If a seqsequent W results from a seqsequent @ by a rule
of MICPL then the following conditions are equivalent:

1. for each constituent o = of @: the set wif(o &) is inconsistent,

2. for each constituent 0 = of W: the set wff(6 =) is inconsistent.

Proof. By Lemma 10.2. O

10.4.2 Soundness w.r.t. Ml-sets

Provability in MIPL and the property of being a Ml-set are linked in a
way characterized by:

Theorem 10.1 (Soundness w.r.t. Ml-sets). Let X be a finite non-empty
set of wffs, and let o & be an ordered sequent such that wff(o ) = X. If
the sequent o - is provable in MICPY then X is a Ml-set.

Proof. Let C’g ' be an arbitrary but fixed ordered sequent such that

X = wa(C[gz] ). Assume that

Ii,....T (10.14)

is a MIPL_proof of the sequent C[mm] F. By Definition 10.11, each con-
stituent of I, is a closed atomic sequent. Hence the set wff(f F) is
inconsistent for each constituent 8 F of I},. Therefore, by Lemma 10.3,

the set wa(C’[g{ ] F) is inconsistent, that is, X is inconsistent.
We shall prove the following:

(%) if I'j+1 has a constituent, o =, such that the set

wif(f\x) (o) F)

is consistent, then I'; has a constituent, 8, such that the set

wif (f\((0) F)

1s consistent, where 1 <73 <n and 1 < k< m.

Let o = be a constituent of I'j;1 for which the set wff(f\;j(o) ) is
consistent. Recall that rules of MIPL “act locally™ if a rule is applied
to a seqgsequent, only one constituent and only one occurrence of a na-
wif in the constituent are acted upon (more precisely, only one term of
the sequence of na-wffs which occurs in the constituent is transformed).
When I'j11 results from I'; by a rule, the following cases are possible:



10.4 Soundness and Completeness 157

(a) o F has been rewritten from I'; into I’j4; (since a rule has been
applied to I'; w.r.t. some other constituent of it),

b) the occurrence of ¢ - in I';11 is due to an application of a rule to
i+
I'; w.rt. a constituent, say, 6 I, of I}.

If (a) is the case, then (%) holds trivially. So assume that (b) holds.
Two sub-cases are possible:

(b1) a rule has been applied to I'; w.r.t. the constituent 6 F and a term
of 6 annotated with k,

(b2) a rule has been applied to I'; w.r.t. the constituent 6 - and a term
of  which is annotated with some numeral j different from k.

If (b1) holds, then wff(f\((€) ) = wff(f\5(o) F), so the set

wif (f\x(0) F)

is consistent. Assume that (by) is the case. Suppose that the set
wWif(f\(x(#) ) is inconsistent though wff(f\(;(o) F) is a consistent set.
Both wff(f\jx)(c) ) and wif(f\x)(f) ) do not contain wffs annotated
with k. So the hypothetical inconsistency of the set wff(f\;)(0) F) is
due to the occurrence in 6 of some wifs(s) annotated with numeral(s)
different from k. Observe that the inconsistency of wff(f\ () F) yields
the inconsistency of the set wff(6 ). However, o F is a constituent of
I'j 11 because a rule has been applied to I'; w.r.t. ¢ - and a wif anno-
tated with a numeral different from k. Thus, by Lemma 10.2, the set
wff(o ) is inconsistent. Moreover, its inconsistency is due to the occur-
rence in o of wifs annotated with numerals different from k. Therefore
the set wff(f\x)(o) F) is inconsistent. We arrive at a contradiction. This
completes the proof of ().

The sequence (10.14) is supposed to be a MIPL-proof, so, by Defi-
nition 10.11, for any k € {1,...,m} there exists a constituent, say, p F,
of I, such that, as fij;(p ) is either () - or is an open atomic sequent,
the set wff(f\(x(p) F) is consistent. Thus, by (¥) proven above, any
term/seqsequent of (10.14) has a constituent, ¢ I, such that

wif (f\x1(€) F)

is a consistent set of wifs. But the sequent C[mm V' is the only constituent

of I'y. Hence wff( f\[k](Cg } ) is a consistent set. As k was an arbitrary
element of {1,...,m}, by Corollary 10.2 it follows that X is a Ml-set. [
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Due to Theorem 10.1, in order to show that X is a Ml-set it suffices to
prove an ordered sequent C[mm 't for which the equation X = WfF(C’[g{ ])

holds. Thus, for instance, the proofs of ordered sequents (10.5), (10.6),
(10.7), (10.8), (10.9), (10.10), (10.11), (10.12), and (10.13) presented in
section 10.3.3 demonstrate that the following are Ml-sets, respectively:

{p,—p}
{p A —p}
{p,~(=p = ¢)}
{pVa,—p,—q}

{p = q,p,~q}
{pA(=pVaq),~q}
{p—=(@—r)prg-r}
{pVv(gVvr),=(pVvae,-(pVvr)}

p—=@—7r)p—=q¢-(p—r)}

10.4.3 Completeness w.r.t. Ml-sets

The system MIPL is complete w.r.t. Ml-sets.
An auxiliary concept is needed.
Definition 10.12 (MI®PL-transformation of a sequent).

A MICPLtransformation of a sequent o & is a finite sequence I, ..., T,
of seqsequents such that:

1. It = {{o F)), and

2. I'jy1 results from I'; by a rule of MICPL for 1 < j < n.

Note that while the concept of proof has been defined for ordered se-
quents only, this restriction is lifted in the case of MICPL-transformations.

Let us now prove:

Theorem 10.2 (Completeness w.r.t. Ml-sets). If X is a Ml-set, then any
ordered sequent o & such that wff(o ) = X is provable in MICPL.
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ICPL reveals that for each

Proof. A moment’s reflection on the rules of M
ordered sequent o - such that wff(o ) is an inconsistent set of wifs, there
exist MIPL_transformations of the sequent which end with seqsequents
whose constituents are closed atomic sequents only.

Assume that X is a Ml-set, and that C’g '+ is an ordered sequent

such that WfF(C’[gﬂ F) = X. Since X is a Ml-set, wa(C[gﬂ ) is an incon-

sistent set. Let

Ii,....T (10.15)

be a MIPL_transformation of the sequent C’g ' such that each con-
stituent of I, is a closed atomic sequent. Suppose that the transforma-

tion (10.15) is not a proof of C7V -
The transformation (10.15) can be depicted as:

I < R (10.16)

Iy < Rl

I,_1< Rg"fl]

I
where ‘<= Rgﬂ’ indicates that the rule applied to I'; acts upon a wif
annotated with ¢; (more precisely, upon an occurrence of such a wif in a
sequent that belongs to I7).

If the transformation (10.15) is not a proof, then, by Definition 10.11,
there exists an index k, where 1 < k < m, such that for each sequent
¢ = which occurs in I, f\5(0) I is a closed atomic sequent.

Suppose that m = 1. Thus X is a singleton set, each rule involved in
(10.16) acts upon a wff annotated with 1, and all the wffs which occur in
I, are annotated with 1. Hence f\m(O) F = ()  for any constituent 6 -
of I'y. It follows that there is no constituent of I, such that f\;(6 ) is
a closed atomic sequent. We arrive at a contradiction.

Suppose that m > 1. We proceed as follows. First, we remove from
(10.16) each I'; which is associated with <« R:[Ek], that is, we skip all the
lines of (10.15) in which a rule acts upon a wif annotated with k. Let

R oy (10.17)

stand for the subsequence of (10.15) obtained from it in this way. Each
I'f, where 1 < j < h, is a sequence of sequents.
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Let I'f = (&1 k..., & F). We define I as:

(Am &) e A (6s) B) (10.18)

Since fi[x(&i) I is a sequent for 1 < i < s, (10.18) is a seqsequent. Then
we consider the following sequence of seqsequents:

AR (10.19)

Observe that wffs annotated with £ do not occur in any constituent of

any element/term of (10.19). Clearly, f\[k](C[mm) Fis

o, el ol el (10.20)

It is easily seen that (10.19) is a MI“PL-transformation of the sequent
(10.20). On the other hand, each constituent of I'7* is a closed atomic
sequent and hence wff(6 ) is inconsistent for any constituent 6 - of 1.
Thus, by Lemma 10.3,

{C1,...,C1,Chi1,- .., C} (10.21)

is an inconsistent set of wifs. But (10.21) is a proper subset of X. There-
fore X is not a Ml-set. We arrive at a contradiction. This completes the
proof. O

10.4.4 Soundness and Completeness
w.r.t. Strong Entailments

As we have shown, the calculus MIPL is sound and complete w.r.t. MI-

sets. Due to Theorem 6.5, the fact that X, —Y is a Ml-set guarantees that
X |K Y holds provided that X N—=Y = () is the case. So when we restrict
ourselves to ordered sequents built in such a way that the fulfilment of
the latter condition is secured, proofs of these ordered sequents can be
viewed as demonstrations that strong mc-entailment hold in the cases
considered.

Theorem 10.3 (Soundness w.r.t. strong mc-entailment).
Let X = {A1,..., Ay} and Y = {By,..., By}, where n +k > 0 and
Aij#-Bj fori=1,...,nand j =1,... k. If the ordered sequent:

AW Al it Ll

is provable in MIPL, then X |< Y.
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Proof. By Theorem 6.5 and Theorem 10.1. O

Example 10.35. MIPL_proofs of the following ordered sequents:

(pA-p)+ (10.6)
(pV )M, =pl, =gl 1 (10.8)
pV (V)M =Vl -(pvrbE (10.12)

presented in section 10.3.3 can be regarded as demonstrations that the
following hold:

pA-p R0 (10.22)
pVal={p,d} (10.23)
pVigvr)|k{pVvapVvr} (10.24)

The following is true as well:

Theorem 10.4 (Completeness w.r.t. strong mc-entailment).
Let X = {Ay,..., Ay} and Y = {By,...,By}, where n+k > 0 and
A; #-Bj fori=1,...,nandj=1,...,k. If X |RY, then the ordered
sequent:
1 +1 +k
AW A gl gl

is provable in MICPL.

Proof. By Theorem 6.5 and Theorem 10.2. O

As for strong sc-entailment, one gets analogous results by applying
Theorem 7.1 instead of Theorem 6.5.

Theorem 10.5 (Soundness w.r.t. strong sc-entailment).
Let X = {A,..., Ay}, wheren > 0 and A; # —-B fori=1,...,n. If

the ordered sequent:

AW Al gl

is provable in MIPL then X | B.

Theorem 10.6 (Completeness w.r.t. strong sc-entailment).
Let X = {Ay,..., Ay}, wheren > 0 and A; # =B fori=1,...,n. If
X |KY, then the ordered sequent:

Al Al gl

is provable in MICPL.



162 Chapter 10 Towards Proof Theory for Strong Entailments

Example 10.36. In section 10.3.3 we presented MIPL-proofs of the
following ordered sequents:

p, —pP (10.5)

pM,=(=p = )P + (10.7)

(p = M, pl?, ~g (10.9)

(A (—p V)M, —q + (10.10)

(p—= (¢ = )M, (p AP, Pl E (10.11)
(p—= (=) (p—= B, =(p = )P+ (10.13)

pRp (10.25)
pPR-p—q (10.26)
{p—aprtKq (10.27)
pA(=pVa) K q (10.28)
{p—=(@—=r)phatRr (10.29)
fp=(@—=r)p—atRp—r (10.30)

The proofs of the ordered sequents (10.8) and (10.12) can be also
regarded as providing demonstrations of:

{pVva,-ptKq (10.31)

{pVv(gVvr),~(pVa} RpVr (10.32)

10.5 MIPL versus Tableaux Calculi
and Erotetic Calculi

The primary rules of MIPL transform wiffs inside sequents analogously
as Smullyan’s tableaux rules do. It is possible to build a calculus of
Ml-sets in the “standard” tableau format, with rules defined as operating
directly on (annotated) wffs, while occurrences of these wffs are nodes
of respective trees. This would require adding an annotation mechanism
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and specifying new closing conditions. The advantage of the current for-
mat over the “standard” tableaux approach lies in its relative simplicity
at the metatheoretical level.

The format of MICPL is akin to that of the so-called erotetic calculi
(cf., e.g., [57], [29]). Calculi of this kind exist for Classical Logic and
a wide class of non-classical logics (cf. [29], [31], |67], [10]). The main
difference between the format of MIPL and that of erotetic calculi lies in
the fact that rules of MIPL operate on sequences of sequents, while rules
of erotetic calculi act upon questions based on sequences of sequents.
Moreover, annotations are exploited here in a new manner, and closing
conditions of a proof are more demanding.

It is known that proofs written in the erotetic calculi format can
be transformed into proofs in tableaux calculi (cf. [29]), sequent calculi
(cf. [30], [29]) or even Hilbert-style calculi (cf. [18]). It is an open prob-
lem whether a similar effect shows up (and if yes, how) in the case of
seqsequent calculi.






Chapter 11

Some Further Applications
of the Formalism of MIFL

MIPL_proofs are devices by means of which Ml-sets and strong entail-

ments can be calculated. However, the formal apparatus of MIPL enables
accomplishments of other tasks as well.

11.1 Disproofs

The system MICPL is useful not only in showing that something is a MI-
set, but also in demonstrating that a set of wifs is inconsistent yet not
minimally so. The latter can be achieved by providing a disproof of an
ordered sequent which corresponds to the set of wifs under consideration.

Definition 11.1 (MIPt-disproof of an ordered sequent). A finite se-
quence of seqsequents Iy, . .., I}, is a MISPL-disproof of an ordered sequent

Cl gy

0= (CE ),

2. I'j41 results from I'; by a rule of MICPL where 1 < j < n,
3. each constituent of I, is a closed atomic sequent,
4

. there exists k € {1,...,m} such that for each constituent o - of
I, the sequent f\y)(o) & is closed.

An ordered sequent is disprovable in MICPL iff the sequent has a MICPL-
disproof.
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Observe that proofs and disproofs differ only with respect to their
closing conditions. To be more precise, each sequence of seqsequents
I, ..., I, satisfying the clauses (1), (2), and (3) of the definition of
proof (i.e. Definition 10.11) and violating clause (4) of the definition is
not a proof, but a disproof.

The following holds:

Theorem 11.1. If there exists a MIPt-disproof of an ordered sequent
C’g] b, then the set WfF(C[gﬂ ) is inconsistent, but is not a Ml-set.
Proof. Let

r,...r (11.1)
be an arbitrary but fixed disproof of C[mm s Everything what has been
said in the proof of Theorem 10.2 about the transformation (10.15), can
be repeated with regard to the disproof (11.1) (of course, after replacing

Iy with I} for 1 < j < n). So Wff(C[mm ) is not a Ml-set. Yet, due to
Definition 11.1 and Lemma 10.2, it is an inconsistent set. O

Example 11.37. Here is an example of a disproof of:

(p— ¢, p? =(pv )P -

(clause (4) is satisfied with regard to numeral 1):

(p— QM pPl =(pVv ¢)B

R
B
—plt) pl, =(pv @)l - ¢l pll ~(pv )Pl - "
R
ﬁp[l]’pp]’ —|p[3]7 —|q[3} |—7 q[l}’p[zh —|(p V q)['?’] = o
Ra
T O 1 O

Thus {p — ¢,p, ~(p V q)}, though inconsistent, is not a Ml-set.
Finally, the following holds as well:

Theorem 11.2. If X is a finite inconsistent set of wffs which is not a MI-
set, then any ordered sequent o - such that wif(o ) = X is disprovable
in MICPL.

Proof. Let

E={ot: ot is an ordered sequent such that wff(oc ) = X'}
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Let A= be the set of all MI®PL_transformations of sequents in Z. As X is
inconsistent, A= includes a non-empty subset AL of MICPL_transformat-
ions each of which ends with a segsequent involving closed atomic se-
quent(s) only. As X is not a Ml-set, by Theorem 10.1 no element of
= has a MIPL_proof. Therefore each transformation in AL violates the
fourth clause of Definition 10.11. Hence AZ comprises MICPL_disproofs of
the sequents in Z. Thus any ordered sequent o F such that wff(o F) = X
is disprovable in MICPL. O

11.2 Strict Multiple-Conclusion Entailment

Let us now consider another subrelation of multiple-conclusion entail-
ment, which we dub strict multiple-conclusion entailment or strict mc-
entailment for short. We use |> as the symbol of this relation, and define

it as follows:53

Definition 11.2 (Strict mc-entailment). X | Y iff

1. X |FY, and
2. for each Be€Y : X |+ Yop.

The difference between strict mc-entailment and strong mc-entailment
lies in the absence of the second clause of the definition of strong mc-
entailment in the definition of strict mc-entailment. In both cases the
hypothetical truth of all the wffs in X warrants the existence of at least
one true wif in Y, and the warranty disappears as Y decreases. How-
ever, in the case of strict mc-entailment, in contradistinction to strong
mc-entailment, it is not required that the warranty disappears as X de-
creases. Thus || is a subrelation of |}>.

Leaving aside the issue of the area of applicability of the concept
of strict mc-entailment®®, let us only note that the formalism of MICPL
enables us to calculate strict mc-entailment from finite sets of wifs.

Clearly, the following hold:

5% Recall that Y55 equals Y \ {B}.

54 However, some ideas suggest themselves. For instance, when Y is an at least
two-element finite set of wffs, the disjunction connective is understood classically,
and X |B>Y holds, then \/ Y may be called a minimal disjunction entailed by X (the
concept of minimal disjunction plays an important role in adaptive logics; see, e.g.
[4]). If, in turn, YV is a set of direct answers to a question @, then X |>Y provides
an explication of the intuitive notion: “a question @ arises from the set of declarative
wifs X7 (cf. [66], p. 114).
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Corollary 11.1. X |pY iff the set X, Y is inconsistent, and for each
BeY, the set X,—(Ysp) is consistent.

Corollary 11.2. If X |pY and Y # 0, then X |t Z for any proper
subset Z of Y.

Let us now prove:

Theorem 11.3. Let X = {A1,...,A,} and Y = {By,..., By}, where
n>z0andk>0.If
In,....0n ()

is a MICPL_transformation of the sequent:
AN Al it Bt (X)
such that (BB) fulfils the following conditions:

(c1) each constituent of Iy, is a closed atomic sequent,

(c2) foreach h € {n+1,...,n+k} there exists a constituent o = of Iy,
such that the sequent f\j(o) &= is an open atomic sequent or is of

the form 0 +.
then X |>Y.

Proof. Condition (c1) together with Lemma 10.3 ensure that X |[= Y.
By a reasoning analogous to that performed in the proof of Theorem
10.1 we get:

(k') if I'j41 has a constituent, o t=, such that the set

wif (f\fp (o) )

is consistent, then I'; has a constituent, 0, such that the set

wif (f\n)(0) F)

s consistent, where 1 < j<m, andn+1< h<n+k.

Thus, due to the condition (c2), for each B € Y, the set X, ~(Yop) is
consistent and hence X |F=Ysp. Therefore X |> Y holds. O

Thus in order to demonstrate that a finite set of wifs X strictly
mc-entails a non-empty and finite set of wifs Y is suffices to perform a
MICPL_transformation of the corresponding sequent such that the trans-
formation satisfies the conditions (c;) and (c2) of Theorem 11.3.
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11.3 MIPL and a Uniform Account of Proofs
and Refutations

As we have remarked in section 3.4 of Chapter 3, in the case of CPL
validity, inconsistency and contingency of wifs are expressible in terms
of Ml-sets. One can easily prove:

Corollary 11.3.

1. A wff C is valid iff {—C} is a Ml-set.
2. A wff C is inconsistent iff {C} is a Ml-set.
3. A wff C is contingent iff {C,~C} is a Ml-set.

Given that the system MI“PL is sound and complete w.r.t. Ml-sets
(cf. theorems 10.1 and 10.2), from Corollary 11.3 we get:5°

Theorem 11.4.

1. A wff C is valid iff the sequent ~CM & is provable in MICPL.

2. A wff C is inconsistent iff the sequent C F is provable in MICPL.

3. A wff C is contingent iff the sequent CY,=CE + is provable in
M|CPL.

MICPL_proofs have been defined as pertaining to ordered sequents.

However, taking into account the content of clause (1) of Theorem 11.4,
it makes no harm to define the concept of MI*PL-proof of a wif as follows:

Definition 11.3 (MI“Pt_proof of a wff). A MIPL_proof of a wff C is the
MICPL_proof of the sequent ~C1 .

By analogy to what we have done in Chapter 3, we can also introduce
the respective concepts of MICPLrefutations of wifs.

Definition 11.4 (MI®PL-refutation® of a wff). A MIPL_refutation® of a
wff C is the MIPL_proof of the sequent C! .

Definition 11.5 (MI®PL-refutation? of a wff). A MIPL_refutation® of a
wff C is the MIPL_proof of the sequent C1H, ~C2 .

Clearly, the following is true:

55 Note that sequents -ct F, ct F, and Cm,ﬁC[Q] F are ordered sequents in
view of Definition 10.10.
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Theorem 11.5.

1. A wff C is valid iff C has a MIPL_proof.
2. A wff C is inconsistent iff C has a MIPL_refutation'.
3. A wff C is contingent iff C' has a MIPL_refutation?.

Thus the system MIPL provides also an account of validity, incon-
sistency, and contingency of CPL-wffs, and does it in a uniform way by
introducing a common proof-theoretic mechanism for proofs and refuta-
tions of CPL-wffs.
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